facebooklinkedinrsstwitterBlogAsset 1PRDatasheetDatasheetAsset 1DownloadForumGuideLinkWebinarPRPresentationRoad MapVideofacebooklinkedinrsstwitterBlogAsset 1PRDatasheetDatasheetAsset 1DownloadForumGuideLinkWebinarPRPresentationRoad MapVideo
Actian Blog / Data Profiling and Data Quality: What You Need to Know

Data Profiling and Data Quality: What You Need to Know

Data Profiling

Data is the lifeblood of business: it drives decision making, allows for analysis and prediction, and can help drive revenue. But data can also be its own worst enemy: it can lead to analysis paralysis, lead to inaccurate predictions, and even make processes more bureaucratic.

That’s where data profiling and data quality come in. Data profiling is the process of understanding the structure of your data, as well as its semantic and numerical content.

Data quality, on the other side, is the process of ensuring that your data is free from errors so that operations can be streamlined and improved.

The two are closely related, and often implemented together: with a solid foundation in one, you’re more likely to find success in the other. Let’s take a look at each side separately.

What is data profiling?

Data profiling is the process of analyzing data, looking at its structure and content, so that you can better understand how your data is relevant and useful, what it’s missing, and how it can be improved.

One of the first places to look when data profiling is your data’s structure, as well as its characteristics, such as its size and the number of values it contains.

You can also look into potential anomalies, such as large outliers or anomalous clusters, which could indicate that your structure is incorrect or that the distribution of values within your structure is faulty.

Data profiling can also look at the semantic and numerical content of your data, and can even look at data formatting. For example, if all your salary data is stored as dollars and cents, rather than being rounded, but your reports are showing salaries rounded to the nearest dollar, that could indicate that your data is not formatted correctly and that it’s not being properly imported into your system or used in reports.

What is data quality?

Data quality is the process of identifying errors within your data, and then correcting those errors, so that your data is as accurate as possible. Some errors, such as incorrect values, can be detected and then corrected by the person who entered the data, but some might be more difficult to identify.

Data quality is important because poor data quality can lead to incorrect decision-making, decreased operational efficiency, and lost revenue through poor marketing targeting. There are many ways to improve your data quality, including hiring a data engineer or data scientist to implement software tools, conducting regular data audits, implementing data integrity checks at scale, or creating a governance model for data quality. To improve your data quality, you can also conduct a data inventory to determine what data you have and how accurate that data is.

How does data profiling help with data quality?

Data profiling and data quality go hand in hand, as they both fall under the umbrella of data quality assurance, or data quality. Data profiling is a tool used to identify the structure, content, and formatting of your data, as well as the people responsible for its creation, so that data quality can be assessed and improved. Think of profiling as the first step in enhancing the quality of your data.

Data profiling and data quality are two sides to the same coin: with accurate data, you can better assess its quality, and with better data, you can better profile it.

Data quality is a process of continuously assessing the quality of data, and then working to improve it. It starts with the initial data collection and continues through the post-implementation review of the data collection process. The main goals of data quality are accuracy, integrity, and relevance. Data quality is an important consideration for all businesses, but especially so for those that rely on data-driven decisions. Data quality will vary depending on the type of data and the industry that it is used in.

Automating Data Quality

Automating data processes makes them virtually hands-off for you, which can help increase your data quality. For example, when you have a lot of lead forms that need to get entered into your database, set up a system that will automatically import the information as soon as it’s submitted. Doing this saves time and reduces the chance that errors will be made while inputting the data manually.

Automating ingestion can help reduce errors, but with the volume of business data, it’s nearly impossible to catch all quality issues at ingestion, which is why automated data quality is critical. By establishing data profiles and quality rules in a platform like DataConnect, you can automatically identify and correct errors before they impact your business.

Data quality is a challenge for every organization that collects and processes data, but it’s essential for businesses to succeed. Many companies struggle to get their data quality act together and understand the root of the problem. But, with a little research and planning, you can ensure your data is accurate, reliable, and useful for your business

About Traci Curran

Traci Curran serves as Director of Product Marketing at Actian focused on the Avalanche Data Platform. With more than 20 years of experience in technology marketing, Traci has previously held senior marketing roles at CloudBolt Software, Racemi (acquired by DXC Corporation), as well as some of the world’s most innovative startups. Traci is passionate about helping customers understand how they can accelerate innovation and gain competitive advantage by leveraging digital transformation and cloud technologies.