Data Intelligence

What is Sensitive Data Discovery?

Actian Corporation

November 12, 2023

sensitive data discovery

Protecting sensitive data stands as a paramount concern for data-centric enterprises. To navigate this landscape effectively, one must first embark on the meticulous task of accurately cataloging sensitive data – this is the essence of sensitive data discovery.

Data confidentiality is a core tenet, yet not all data is created equal. It is imperative to differentiate between sensitive data and information requiring heightened security and care. Sensitive data encompasses a broad spectrum, including personal and confidential details whose exposure could lead to significant harm to individuals or organizations. This encompasses various forms of information, such as medical records, social security numbers, financial data, biometric data, and details about personal attributes like sexual orientation, religious beliefs, and political opinions, among others.

The handling of sensitive data necessitates relentless adherence to rigorous security and privacy standards. As part of your organizational responsibilities, you are required to implement robust security measures to thwart data leaks, prevent unauthorized access, and shield against data breaches. This entails employing techniques such as encryption, two-factor authentication, access management, and other advanced cybersecurity practices.

Once this foundational principle is acknowledged, a pivotal question remains: Does your business engage in the collection and management of sensitive data? To ascertain this, you must undertake the identification and protection of sensitive data within your organization.

How do you Define and Distinguish Between Data Discovery and Sensitive Data Discovery?

Data discovery is the overarching process of identifying, collecting, and analyzing data to extract valuable insights and information. It involves exploring and comprehending data in its entirety, recognizing patterns, generating reports, and making informed decisions based on the findings. Data discovery is fundamental for enhancing business operations, improving efficiency, and facilitating data-driven decision-making. Its primary objective is to maximize the utility of available data for various organizational purposes.

On the other hand, sensitive data discovery is a more specialized subset of data discovery. It specifically centers on the identification, protection, and management of highly confidential or sensitive data. Sensitive data discovery involves pinpointing this specific type of data within an organization, categorizing it, establishing appropriate security protocols and policies, and safeguarding it against potential threats, such as data breaches and unauthorized access.

What is Considered Sensitive Data?

Since the enforcement of the GDPR in 2018, even seemingly harmless data can be deemed sensitive. However, it’s important to understand that sensitive data has a specific definition. Here are some concrete examples.

Sensitive data, to begin with, includes Personally Identifiable Information, often referred to as PII. This category covers crucial data like names, social security numbers, addresses, and telephone numbers, which are essential for the identification of individuals, whether they are your customers or employees.

Banking data, such as credit card numbers and security codes, holds a high degree of sensitivity, given its attractiveness to cybercriminals. Customer data, encompassing purchase histories, preferences, and contact details, is invaluable to businesses but must be diligently safeguarded to protect the privacy of your customers.

Health data, consisting of medical records, diagnoses, and medical histories, stands as particularly sensitive due to its deeply personal nature and its vital role in the realm of healthcare.

However, the realm of sensitive data extends far beyond these examples. Legal documents, such as contracts, non-disclosure agreements, and legal correspondence, house critical legal information and thus must remain confidential to preserve the interests of the parties involved. Depending on the nature of your business, sensitive data can encompass a variety of critical information types, all necessitating robust security measures to ward off unauthorized access or potential breaches.

What are the Different Methodologies Associated With the Discovery of Sensitive Data?

The discovery of sensitive data entails several essential methodologies aimed at its accurate identification, protection, management, and adherence to regulatory requirements. These methodologies play a crucial role in securing sensitive information:

Identification and Classification

This methodology involves pinpointing sensitive data within the organization and categorizing it based on its level of confidentiality. It enables the organization to focus its efforts on data that requires heightened protection.

Data Profiling

Data profiling entails a detailed analysis of the characteristics and attributes of sensitive data. This process enhances understanding, helping to identify inconsistencies, potential errors, and risks associated with the data’s use.

Data Masking

Data masking, also known as data anonymization, is pivotal for safeguarding sensitive data. This technique involves substituting or masking data in a way that maintains its usability for legitimate purposes while preserving its confidentiality.

Regulatory Compliance

Complying with laws and regulations pertaining to the protection of sensitive data is a strategic imperative. Regulatory frameworks like the GDPR in Europe or HIPAA in the United States establish stringent standards that must be followed. Non-compliance can result in significant financial penalties and reputation damage.

Data Retention and Deletion

Effective management of data retention and deletion is essential to prevent excessive data storage. Obsolete information should be securely and legally disposed of in accordance with regulations to avoid data hoarding.

Specific Use Cases

Depending on the specific needs of particular activities or industries, additional approaches can be implemented. These may include data encryption, auditing of access and activities, security monitoring, and employee awareness programs focused on data protection.

Managing sensitive data is a substantial responsibility, demanding both rigor and an ongoing commitment to data governance. It necessitates a proactive approach to ensure data security and compliance with ever-evolving data protection standards and regulations.

actian avatar logo

About Actian Corporation

Actian empowers enterprises to confidently manage and govern data at scale. Actian data intelligence solutions help streamline complex data environments and accelerate the delivery of AI-ready data. Designed to be flexible, Actian solutions integrate seamlessly and perform reliably across on-premises, cloud, and hybrid environments. Learn more about Actian, the data division of HCLSoftware, at actian.com.
Data Management

Data Management for a Hybrid World

Derek Comingore

November 9, 2023

hybrid cloud data management

For most companies, a mixture of both on-premises and cloud environments called hybrid cloud is becoming the norm. This is the second blog in a two-part series describing data management strategies that businesses and IT need to be successful in their new hybrid cloud world. The previous post covered hybrid cloud data management, data residency, and compliance. 

Platform Components for a New Hybrid World

There are essential components for enabling hybrid cloud data analytics. First, you need data integration that can access data from all data sources. Your data integration tool needs a high degree of data quality management and transformation to convert raw data into a validated and usable format. Second, you should have the ability to orchestrate pipelines to coordinate and manage integration processes in a systematic and automated way. Third, you need a consistent data fabric layer that can be deployed across all environments and clouds to guarantee interoperability, consistency, and performance. The data fabric layer must have the ability to ingest different types of data as well. Last, you’ll need to transform data into formats and orchestrate pipelines. 

Scaling Hybrid Cloud Investments

There are several costs to consider for hybrid cloud such as licensing, hardware, administration, and staff skill sets. Software as a Service (SaaS) and public cloud services tend to be subscription-based consumption models that are an Operational Expense (Opex). While on-premises and private cloud deployments are generally software licensing agreements that are a Capital Expenditure (Capex), subscription software models are great for starting small, but the costs can increase quickly. Alternatively, the upfront cost for traditional software is larger but your costs are generally fixed, pending growth. 

Beyond software and licensing costs, scalability is a factor. Cloud services and SaaS offerings provide on-demand scale. Whereas on-premises deployments and products can also scale to a certain point, but eventually may require additional hardware (scale-up) and additional nodes (scale-out). Additionally, these deployments often need costly over-provisioning to meet peak demand.  

For proprietary and high-risk data assets, leveraging on-premises deployments tends to be a consistent choice for obvious reasons. You have full control of managing the environment. It is worth noting that your technical staff needs to have strong security skills to protect on-premises data assets. On-premises environments rarely need infinite scale and sensitive data assets have minimal year-over-year growth. For low and medium-risk data assets, leveraging public cloud environments is quite common including multi-cloud topologies. Typically, these data assets are more varied in nature and larger in volume which makes them ideal for the cloud. You can leverage public cloud services and SaaS offerings to process, store, and query these assets. Utilizing multi-cloud strategies can provide additional benefits for higher SLA environments and disaster recovery use cases. 

Hybrid World Data Management Made Easy

The Actian Data Platform is a hybrid and multi-cloud data platform for today’s modern data management requirements. The Actian platform provides a universal data fabric for all modern computing environments. Data engineers leverage a low-code and no-code set of data integration tools to process and transform data across environments. The data platform provides a modern and highly efficient data warehouse service that scales on-demand or manually using a scheduler. Data engineers and administrators can configure idle sleep and shutdown procedures as well. This feature is critical as it greatly reduces cloud data management costs and resource consumption.  

The Actian platform supports popular third-party data integration tools leveraging standard ODBC and JDBC connectivity. Data scientists and analysts are empowered to use popular third-party data science and business intelligence tool sets with standard connectivity options. It also contains best-in-class security features to support and assist with regulatory compliance. In addition to that, the data platform’s key security features include management and data plane network isolation, industry-grade encryption, including at-rest and in-flight, IP allow lists, and modern access controls. Customers can easily customize Actian Data Platform deployments based on their unique security requirements. 

The Actian Data Platform components are fully managed services when run in public cloud environments and self-managed when deployed on-premises, giving you the best of both worlds. Additionally, we are bringing to market a transactional database as a service component to provide additional value across the data management spectrum for our valued customers. The result is a highly scalable and consumable, consistent data fabric for modern hybrid cloud analytics. 

derek comingore headshot

About Derek Comingore

Derek Comingore has over two decades of experience in database and advanced analytics, including leading startups and Fortune 500 initiatives. He successfully founded and exited a systems integrator business focused on Massively Parallel Processing (MPP) technology, helping early adopters harness large-scale data. Derek holds an MBA in Data Science and regularly speaks at analytics conferences. On the Actian blog, Derek covers cutting-edge topics like distributed analytics and data lakes. Read his posts to gain insights on building scalable data pipelines.