
1

2

p14746 OR 6.2.0 (int.w32/00)

3

4

5

6

7

Numbers in circles in the title refer to the numbering of the sub-objectives on the

previous page

8

Demo:

D201504_BitmappedBkgFields -cBitmappedBkg_Rounding

Note that all these fields are identical apart from size: same bitmap, same

BgDisplayPolicy (BDP_CORNERED), BgPattern (FP_BITMAPCLEAR), CornerSize

(3 pixels).

Note that the appearance of the field, other than the text, is entirely

due to the bitmap, including the edges and corners.

Click the Go button (to apply a variety of cornersizes to the fields)

Note that the borders are still preserved, the corners are transparent and

antialiased at all radii, the corners can be individually rounded.

/*

** Set a rounding of 5 pixels for each corner

*/

btn.UpdBackground(cornersize=5);

/*

** Set independent roundings for each corner

** (this one curves the top two corners, rightangles the bottom two)

*/

#define $TL '256**0‘ -- topleft

#define $TR '256**1‘ -- topright

#define $BR '256**2‘ -- bottomright

#define $BL '256**3‘ -- bottomleft

9

btn.UpdBackground(cornersize=25*$TL + 25*$TR + 0*$BR + 0*$BL);

Can also define BorderWidth, BorderStyle.

9

Demo:

D201504_BitmappedBkgFields -cBitmappedBkg_ImageSwitch

Click the Go button

Note that on the left is the single bitmap (containing 10 images) that all

the buttons on the right use.

Note that initially the imageindex is unset, so all of the fields are using

the first image

Click the Go button

Note that each field now has a different imageindex between 1 and 10; that

is the only thing that has changed.

/*

** Display the buttonstyles

*/

for i = 1 to styler.ChildFields.LastRow do

btn = styler.ChildFields[i];

/*

** Change the imageindex

*/

btn.UpdBackground(imageindex=i);

endfor;

Borders can be range of styles (plain, concentric, 3-D, adhoc, none); plain borders can be

any width; concentric borders can have up to 3 layers.

10

Key properties are: UpdBackground method; BgBitmap, BgDisplayPolicy and BgPattern

attributes.

10

Demo:

D201504_DefinedResponses_Sprites -cProgressBars_coded

Click the first button; when second button activates, click it

/*

** List and count and graph the imagefiles in each of the listed folders

*/

for i = i + 1 to folders.LastRow do

foldername = folders[i].Value;

/*

** Execute a Windows command to list the image files; read in and parse the list file;

** Add the count of found bitmaps to the total bitmaps of this type;

*/

call system :cmd; //creates list in file <fname> of bitmaps in the folder <foldername>

filestring.FileHandle = fname;

fromct = ct;

ct = ct + filestring.Split(delimiter=HC_NEWLINE).LastRow;

/*

** Define a sprite as a line between the old value and the new; display the sprite;

** Tell the progress bar how far (%) we have got

*/

height = (ct-fromct)/scale + 1;

SDS[j].SetAttribute(spritesourceindex=j, x=i, y=graphh - fromct/scale - height,

height=height, width=width);

SDS[1].ApplySpriteMap(targetfield=field(graph), descriptors=SDS, operation='add');

step = (i*100)/folders.LastRow;

11

IE.TriggerEventBehavior(location=progbar,

eventkey=progtriggerkey + '#' + varchar(step) + ',' + varchar(step));

endfor;

11

12

…
/*

** Map the Economy Class seats (as sectors)

*/

for row = 27 to 44 do

for aisle = 1 to 11 do

…
descriptor = descriptors[indx];

descriptor.SetAttribute(spritesourceindex=1, name=name, width = 20,

height = 22,

sector=1, gravity='CC', x=x, y=y);

endfor;

endfor;

SD.ApplySectorMap(targetfield=field(airplane), descriptors=descriptors,

operation='apply');

/*

** Put passengers on the seats (as sprites)

*/

for I = 1 to passengers.LastRow do

13

…
descriptor = descriptors[indx];

descriptor.SetAttribute(spritesourceindex=indx, name=seatname,

flags=responseflags,

sector=seatsector, gravity='CC', x=0, y=0);

endfor;

endfor;

SD.ApplySpriteMap(targetfield=field(airplane), descriptors=descriptors,

operation='apply');

13

Demo:

w4gldev runimage workbnch.img -Tall -/appflags profile=or62demos

application=allocationsystems component=airlineseating command=openscript#561

Note that the code is creating a spritedescriptor definition for each Economy

seat, treating it as a sector, computing each seat’s size and x & y. Then the code
creates a sectormap from the descriptors, and stores it in the “seating plan”
bitmap.

Go to line 265

Note that whenever a passenger is dragged to a new seat, the code just calls the

LastInputAction method, once to identify the passenger

(action=‘mousedrag_down’) and once to identify the seat
(action=‘mousedrag_up’).

14

Demo:

D201504_BitmappedBkgFields -cBitmappedBkg_Opacity_Transparenc

Run the frame

Note that the frame background displays a satellite image of the world, as a

Mercator projection

Rightclick the frame

Note that the world image is overlaid with a field that has transparent areas

(forming the letters of the word "OpenROAD"), and translucent areas (75%

opacity).

Demo:

w4gldev runimage workbnch.img -Tall -/appflags profile=or62demos

application=d201504_bitmappedbkgfields

component=bitmappedbkg_opacity_transparenc command=openscript

Note that the frame background displays a satellite image of the world.

Note that there is a buttonfield overlaying the background, but that field initially

is FP_CLEAR and has no text, so you cannot see it.

Rightclick the frame

Note that the code simply makes the upper field’s background transparent
(FP_BITMAPCLEAR) and translucent (opacity=0.75, set using the UpdBackground

method)

15

/*

** Make the overlying field transparent and 75% opaque

** (overfield is a buttonfield with an image of the word “OpenROAD”.
Underneath is the frame’s
** topform, displaying a satellite image of the world)

*/

overfield.BgPattern = FP_BITMAPCLEAR;

overfield.UpdBackground(cornersize=1, opacity=0.75);

15

16

Demo:

w4gldev runimage workbnch.img -Tall -/appflags profile=or62demos

application=d201504_definedresponses component=progressbars_predefined

command=open

Continue as shown.

In this example, the tooltiptext in the TaggedValue Editor Items Dialog is displaying a

description of the stored defined behavior that drives the marquee bar.

• the marquee behavior is actually a sprite-based animation that moves the

green pulse to and fro

• The description is derived by examining and interpreting the KeyedItems that

make up the behavior definition

The behavior is actually stored in the marquee field, as a TaggedValue object called

(“event_responses”), containing a collection of Items defining the required behavior.
No 4GL code or event is required for the animation.

17

/*

** Store the field’s value (numeric in this example);
** Retrieve the stored value;

** Retrieve the entire taggedvalue

*/

fld.SetTaggedValue(tag=‘lastvalue’, textvalue=Varchar(fldvalue)); //stores the

number

lastvalue = Int4(fld.GetTagText(tag=‘lastvalue’)); //gets the

number

lastvalue_tag = fld.FetchTaggedValue(tag=‘lastvalue’); //gets the

taggedvalue itself

18

“Procedure-handles”: ProcHandles
ProcHandles have a huge advantage over Call Procedure as a way of invoking frame or

field or userclass procedures:

• Call procedure myproc (or call procedure :myprocname) only works if the calling code

can see the procedure-declaration – in practice this limits callable local procedures to

those declared in the same script

call procedure myproc(…parameters…); //works only if procedure

declaration is visible

• The ProcHandle for myproc incorporates the declaration, so it works from outside the

frame or userclass – under the right circumstances it can even be saved and restored,

or exported and reimported, and it will still work

/*

** Create ProcHandle for this procedure

*/

myprochandle = myUserclass.GetProcHandle(name=‘myproc’);

/*

** Execute procedure from different frame, method, procedure

*/

myprochandle.Call(…parameters…); //works in much wider range of

19

circumstances

19

/*

** Store the last triggerfield and last event in the frame’s topform
** …
** Get the last triggerfield (later on, when we need it)

*/

form = curframe.TopForm;

status = form.SetTaggedValue(tag=‘lasttrigger#field’, item=curframe.TriggerField);
status = form.SetTaggedValue(tag=‘lasttrigger#event’, item=curframe.CurEvent);
…
form.FetchTaggedValue(tag=‘lasttrigger#field’, item=Byref(triggerfield));

20

21

Examples of Hansel and Gretel code / Adhoc trails:

- passing an incrementing counter to a userevent as the MessageInteger

- including the datatype of a variable in the variable’s name

22

4GL to System – executing predefined behaviors:

With the new sprites and InputEvent/Response processing, field and frame appearance

can be much richer, and match chosen styles

• There is system support for the underlying generic mechanisms,

• but the actual behaviour of a given style has to be customized, and that means 4GL

So, we (and you) use 4GL to predefine the style behaviour as TaggedValues, and store

them

• See Setup Frame capability

Now OpenROAD runtime can see the stored behaviors in the tagged values when the

frame starts up, and do the work,

• Without any need for 4GL code or events

More about this in the next two sections

23

24

25

Two ways to enable a field for inputevents:

/*

** Create an “inputevent_enabled” taggedvalue in the field
** (for use if and only if the behaviour does not involve a BgBitmap)

*/

fld.SetTaggedValue(tag=‘inputevent_enabled’);
/*

** Apply the InputEvent ActivateFields method to the field

** (ensures each listed field has a BgBitmap and a suitable BgDisplayPolicy)

*/

IE.ActivateFields(fields=fields, bitmap=bitmap);

InputEvents:

IE_KEYDOWN

IE_KEYUP

IE_SYSKEYDOWN

IE_SYSKEYUP

IE_MOUSEMOVE

IE_LMOUSEDOWN

IE_LMOUSEUP

IE_LMOUSEDBLCLK

26

IE_RMOUSEDBLCL

K

IE_MMOUSEDOW

N

IE_MMOUSEUP

IE_MMOUSEDBLC

LK

IE_NCMOUSEHOV

ER

IE_MOUSEHOVER

IE_SETFOCUS

IE_LOSEFOCUS

IE_MOUSEENTER

IE_INIT //Initialization (not initialize) event

IE_MOVEPOINT //The most recent move event at this

timepoint

IE_PULSE //Pulse-alert event (heartbeat alert, every 1

second)

IE_TICKPOINT //Registered heartbeat-alert event

IE_USER //User-defined action (IE_USER+1,

IE_USER+2, etc,

are also available

IE_RMOUSEDOWN

IE_RMOUSEUP

26

27

28

29

Demo:

D201504_DefinedResponses_Panel –cPassportDetails

Run the frame

Hover the mouse over any of the “?” icons
An infopanel describing that field will appear

Note that no runtime code is involved in each popup response

Demo:

D201504_DefinedResponses –cDecodeDefinedBehavior

Run the frame

Continue as instructed (instructions on frame)

Note that each resultant tooltiptext identifies what combination of mouse or

timer action and modifier key will produce what response, based on the

selections that were made.

Note that you can have multiple simultaneous responses to a single action.

30

Demo:

D201504_VideosConverted

Run application

Choose Check Out option

Enter 151 as customer account

Ctrl-Shift-Tab to move focus to “Commit Changes”
Hover mouse over Date Out column header

Demo:

D201504_BitmappedTabfolderTabs -cBDPTabHighlighing

Mouse vertically over an unselected tab

• The tab will highlight

Storable Defined Behaviors in Restyling (see Videos demo):

• Restyling is applied to ButtonFields, EntryFields, TableField headers, TabFolder tabs,

SubForms, other compositefields, FreeTrims, Mainbars, RectangleShapes,

ControlButtons.

• Most other fields are already W7 style, since we used native widgets for them.

• Field fonts are changed to Segoe UI 9

31

32

33

QueueResponse Method:

Frames can only execute properly if called from 4GL code triggered (directly or indirectly)

by an OpenROAD event that has been handled by the 4GL Event Queue. (This is why

OpenROAD Server applications cannot handle frame calls).

InputEvent responses bypass the 4GL Event Queue, so if you need your ProcHandle (4GL

procedure) response to call a frame, for example an info-popup, you need a way for it to

queue its processing. The QueueResponse Method provides that.

34

35

Demo:

D201504_SpritemapConverter –cSpritemapConverter

Click the button

• the attribute fields on the right fill with values parsed from the example definition

string on the left

Amend any of the SpriteDescriptor attribute field values

Click the button

• the spritemap on the left changes to reflect the new spritedescriptor settings

36

RequestManager, Active_Display, and RespondToRequest

RequestManager is for use with frames created from the active_display FrameTemplate

although you can take advantage of its features for other purposes

Active_display frames treat each enduser action as a request for a particular response

For example: Clicking the Save Button is a request for a Business-Item-Save

response

Each active_display frame contains just 60 lines of code (which you can add to or delete)

the RequestManager does all the 4GL work, via the RespondToRequest method.

RequestManager holds all the generic functions for these frames

Each of these can be overdefined in the frame by a local procedure.

Overdefining and extending the functions:

In RequestManager, each function is a “case” within one of the following local
procedures:

FrameRequest, DataRequest, TblRequest, OtherRequest.

Each procedure has the same interface (action=varchar, trigger=fieldobject, info=object).

To override the Close function (which belongs to FrameRequest), for example:

• Create a FrameRequest local procedure in your frame, with the standard interface.

• In it put a case action statement, with a case of ‘close’:
• In the close case, put or call the processing you want executed instead of the

RequestManager default.

37

w4gldev runimage workbnch.img -Tall -/appflags profile=or62demos

application=d201504_definedresponses_sprites component=progressbars_coded

command=openscript#520

Note the way the EventKey and Response and LoadEventBehavior methods

combine to create and store a defined behavior

Go to line 603

Note that the code samples here are both setup code extracts, not needed at

runtime

They use the InputEvent and SpriteDescriptor Helper Class methods.

Note that the “Compound bitmaps, sprites, animations, defined behaviors” slide
shown earlier has an extract of runtime code,

also using the InputEvent and SpriteDescriptor Helper Class methods.

38

39

40

Demo:

w4gldev runimage workbench.img –Tall -/appflags profile=or62demos

application=D201504_ImageMapping component=countymap command=open

The CountyMap frame is opened for edit

Select the SetupName entry in the Property Inspector

The Setup Frame dialog will appear

Select the "D201504_ImageMapping" application and the "setupcountymap"

frame,

and click OK

The SetupCountyMap setup frame will run

Click the "County Outlines" tab

An outline map of English counties will appear

Click the "Setup the county map" button

After a few seconds each county will be coloured a different shade of grey

Note that the CountyMap frame, the one that the enduser will see at

runtime, has been setup and ready to go:

- the grey (mask) image, the county boundary coordinates, and the cross-

reference of these to the county demographic data, have all been

generated by the setup frame, and applied to the CountyMap frame

Close the setup frame

Run the county map frame

41

Click any point in SouthEast England on the satellite image to confirm that setup

has worked correctly

- the county under the mouse is outlined in green, the name and

demographic data for that county appear on the right, and a satellite

image of that county appears above the data

41

Around 300 executing statements in the setup frame 4GL, leaving just 70 in the runtime

frame.

42

Demo (continued):

Run the CountyMap frame

Click somewhere in SE England.

(Note – the source data was missing some counties; clicking on those gives incorrect

results)

How does it work? Simply and generically:

- The colour of the mask at the mouse location identifies the county

- That county’s name and data is displayed
- That county’s border coordinates are used to draw the outline
- A rectangle including the county is extracted as an image

- FillBitmap fills everywhere outside of the border with the border colour

- The image is displayed treating the border color as transparent.

43

44

45

46

