R & = S S~

o

OpenROAD.6.2~New 2% ~°

. . > .
Features in Detail, Part | - =
K &

%o .
: ado o .
New in OpenROAD 6.2 — For OpenROAD developers. o ¢ SgNca
Third of four presentations. Assumes attendance at the first. B %& Q° e
QO
Sean Thrower o
May, 2015 0
Q

h Disclaimer

This document is for informational purposes only and is subject to change at any time
without notice. The information in this document is proprietary to Actian and no part of
this document may be reproduced, copied, or transmitted in any form or for any purpose
without the express prior written permission of Actian.

This document is not intended to be binding upon Actian to any particular course of
business, pricing, product strategy, and/or development. Actian assumes no responsibility
for errors or omissions in this document. Actian shall have no liability for damages of any
kind including without limitation direct, special, indirect, or consequential damages that
may result from the use of these materials. Actian does not warrant the accuracy or
completeness of the information, text, graphics, links, or other items contained within this
material. This document is provided without a warranty of any kind, either express or
implied, including but not limited to the implied warranties of merchantability, fitness for a
particular purpose, or non-infringement.

- Confidertial € 2014 Actisn Corporstan Ecmn

| Overview

2 OpenROAD 6.2 — New generic features in more detail, Part |
m The third of four presentations covering OpenROAD 6.2
2 This presentation is the first of two reviewing in detail the new features in this release

m Featuresillustratedin the presentation will require the first OpenROAD 6.2 patch
* pl4746or later

OpenROAD

This presentation assumes that you have seen the Overview presentation.

If you have not, we recommend that you first view the recording of the Overview
presentation, available at
https://actian.webex.com/actian/j.php?MTID=m013e2f1d62551cb8f21d7f92dd145f6f

R — iRctian

p14746 OR 6.2.0 (int.w32/00)

OpenROAD 6.2 Objectives

2 OpenROAD 6.2 is the outcome of a set of objectives pursued
systematically over the last few years:

| - Provide specific support for certain in-demand business requirements

Il - Reduce the cost of OpenROAD development (time, headcount, skill,
maintenance)

Il - Improve the deployment of OpenROAD

IV - Provide generic enabling facilities to underpin the new features and
also future ones

V - Implement all these changes in a way that logically extends the
OpenROAD metamodel and fills important gaps in it

< The fourth objective is addressed in this and the subsequent
presentation

i@ctian

I Inthe Overview Presentation (reminder):

2 Meeting Business Requirements

m Restyling to up-to-date look-and-feel(s)

m Same-code (unchanged code) transformations
m Generated userclasses and displays

m Active-map and Booking/Allocation capabilities
m Richer out-of-the-box capabilities

m Easierdeployment

< Improving OpenROAD ROI

- Carfidential © 2014 Actian Carporation @chﬁn

| Meeting OpenROAD 6.2 Objectives ...

= |V - Providing generic enabling facilities to underpin the
new client-oriented features, and future ones

Confidential @ 2014 Actian Corporation

IV - Providing generic enabling facilities to underpin the
business-need features, both current and future

1. Bitmapped backgrounds with built-in bordering and double-buffering
2. Compound bitmaps, sprites and animations
3. Tagged Values/ltems
4. Storable defined-behaviours
5. Helper classes and Setup frames
6. Many enabling property and method changes to field and data classes
* TreeViews, TableFields, TabFolders; String & BitmapObjects; and much more
7. Enhanced PropertyChanger facilities Items6to 8 are
coveredin the fourth
8. Databaseand display heuristics presentation
9. DownloadableIngresNet ltems 9 and 10 were
10. LoadnRundeployment ;?::;i?ait?;:e .

i@ctian

i U Bitmapped backgrounds with built-in borderlng and
double-buffering ® ;ge 3_4

S e t~—— =

< Field appearance in commercial applications has become
immensely complicated and flexible
m Static rectangular backgrounds are the exception not the rule

m The comprehensive property-based model is too unwieldy and obscure,
and draws too slowly if unbuffered

- Paradigm change

m Treat field appearance as a single background image, switchable

m Incorporate bordering, autoresizing, transparency, opacity, gradients

Implemented as BitmapObject methods
m Double-buffer the drawing of the field appearance

m Reimplement to optimize the new approach

- Still retain property-based model for backward compatibiiity

- onfidential € 2014 Actian Corporation @cmn

Numbers in circles in the title refer to the numbering of the sub-objectives on the
previous page

| ... Bitmapped backgrounds with built-in bordering and
double-buffering ...

2 Applied using either Property Inspector, or 4GL code:
BgDisplayPolicy attribute: BDP_BORDERED and BDP_CORNERED
BgPattern attribute: FP_BITMAPCLEAR

BgBitmap attribute: CornerSize setting

> Effects:
The background interior resizes with the field, but borders and corner are preserved
The cornering can be in the bitmap, or applied to the bitmap

All the following are copies of the same field with the same BgBitmap:

Go Go Go Go
Go
Go Go Go Go
Go
Go Go Go Go
Go
Go Go Go Go
Go
= iRcton

Demo:

D201504_BitmappedBkgFields -cBitmappedBkg_Rounding
Note that all these fields are identical apart from size: same bitmap, same
BgDisplayPolicy (BDP_CORNERED), BgPattern (FP_BITMAPCLEAR), CornerSize

(3 pixels).
Note that the appearance of the field, other than the text, is entirely
due to the bitmap, including the edges and corners.

Click the Go button (to apply a variety of cornersizes to the fields)

Note that the borders are still preserved, the corners are transparent and
antialiased at all radii, the corners can be individually rounded.

btn.UpdBackground(cornersize=5);

#define STL '256**0° -- topleft
#define STR '256**1° -- topright
#define SBR '256**2° -- bottomright

#define SBL '256**3¢ -- bottomleft

btn.UpdBackground(cornersize=25*STL + 25*STR + 0*$BR + 0*S$BL);

Can also define BorderWidth, BorderStyle.

| O Compound Bitmaps: Switching borders, rounding‘,
ﬁradlents hlghllghts 0o e !
m._;:a-:__, —= __..-.f—» —

> BitmapObjects can contain up to 255 subimages (and 255 sprite
“icons”)

m Highlightingis just switching the subimage index
* Using UpdBackground() with Imagelndex parameter

m Windows7 requires 10 different subimages: Go

=) 1 =
{ | normal

| \ J highiight |
| dimmed

Go
One ButtonField — ‘ B
E focus pulse |

One BgBitmap, ey

with ten subimages

focus |

default Euth
default

|
|
|
i focus highiight |
|
|

focus down

_focusdrag]

—

o] i@ctan

Demo:
D201504_BitmappedBkgFields -cBitmappedBkg_ImageSwitch

Click the Go button
Note that on the left is the single bitmap (containing 10 images) that all

the buttons on the right use.
Note that initially the imageindex is unset, so all of the fields are using

the first image

Click the Go button
Note that each field now has a different imageindex between 1 and 10; that

is the only thing that has changed.

fori =1 to styler.ChildFields.LastRow do
btn = styler.ChildFields][i];

btn.UpdBackground(imageindex=i);
endfor;

Borders can be range of styles (plain, concentric, 3-D, adhoc, none); plain borders can be
any width; concentric borders can have up to 3 layers.

10

Key properties are: UpdBackground method; BgBitmap, BgDisplayPolicy and BgPattern
attributes.

10

h Compound bitmaps, sprites, animations, defined behaviors @

Exrwr————

|
E}TCh dot or line on
t bgraph is a sprite

N

- Apply sprite icons (and sectors) to ActiveFields using:

m UpdBackground method: Spritemap and Sectormap parameters, or

m InputEvent LoadEventBehavior/TriggerEventBehavior methods

—

Each BgBitmap has
three sprite icons

/

To run this frame takes
just 100 executing
statements at runtime ...

Demo:
D201504 DefinedResponses_Sprites -cProgressBars_coded
Click the first button; when second button activates, click it
fori=i+1to folders.LastRow do
foldername = folders[i].Value;
call system :cmd; //creates list in file <fname> of bitmaps in the folder <foldername>

filestring.FileHandle = fname;
fromct = ct;
ct = ct + filestring.Split(delimiter=HC_NEWLINE).LastRow;

height = (ct-fromct)/scale + 1;

SDS[j].SetAttribute(spritesourceindex=j, x=i, y=graphh - fromct/scale - height,

height=height, width=width);

SDS[1].ApplySpriteMap(targetfield=field(graph), descriptors=SDS, operation='add');

step = (i*100)/folders.LastRow;

11

endfor;

IE.TriggerEventBehavior(location=progbar,
eventkey=progtriggerkey + '#' + varchar(step) +',' + varchar(step));

11

h More about Compound Bitmaps

Blank bitmap

Blank bitmap

Blank bitmap

_ Confidential & 2014 Actian Corparstan

m To create a bitmap containingsub-images:

Sublmages

m To create a bitmap containingsprite icons:

Array of II
S

prite lcons

Array o I
Sublmages +

Spritebitmap

2 Created using ComposeBitmap (or a bitmap editor ...)

Image 1
Image 2
Image 3

bitmap.ComposeBitmap(elementtype=BE_IMAGE, elements=subimages);

Blank bitmap
Sprite 1{Sprite 2

bitmap.ComposeBitmap(elementtype=BE_ICON, elements=spriteicons);

m To create a bitmap containingimages and sprites:

Image 1
Image 2
Image 3

Sprite 1!Sprite 2.

bitmap.ComposeBitmap(elementtype=BE_IMAGE, elements=subimages, hasicons=TRUE);

IEctan

12

| More about sprites — aircraft seating allocation example

m Seats are defined as sectors —
300 of them —stored in the
bitmap in a single “sectormap”

2 B B 2 () s s o« a0
string. Each sector definition A4 A S AR d R | B R A
includes the seat code. J VRN NP I 1 1 1 e il
3 0 @ 7 0| B R A < HHa e A

m Passengers are defined as :
. “ ” PR IRARIN AT A I A A B A A A PP B
sprites — 295 “passenger 3 3 3 3 200 dd AT I AT I T I e A A A
AT A A R R A A A PR P

sprites, 3 “available” sprites, 1
“maybe available” sprite, 1
“unhappy passenger” sprite,
positioned by assigning them
to a sector (seat), and stored
within the bitmap in a single
“spritemap”. m The displayshows just 1 field, with 1 simple
BgBitmap, and 4 sprite images that are
attachedto the bitmap at runtime

m Sprites can be dragged (and
the mouse changed to indicate
draggable sprites) — the rest is m See SpriteDescriptor Helper Class (later) for
just logic code. more details about sprites.

- onfidential € 2014 Actian Corporation @ct‘c\n

/*
** Map the Economy Class seats (as sectors)
*/
for row =27 to 44 do
for aisle=1to 11 do

descriptor = descriptors[indx];
descriptor.SetAttribute(spritesourceindex=1, name=name, width = 20,
height = 22,
sector=1, gravity='CC', x=x, y=y);
endfor;
endfor;

SD.ApplySectorMap(targetfield=field(airplane), descriptors=descriptors,
operation="apply');

/*
** Put passengers on the seats (as sprites)
*/

for | = 1 to passengers.LastRow do

13

descriptor = descriptors[indx];
descriptor.SetAttribute(spritesourceindex=indx, name=seatname,
flags=responseflags,
sector=seatsector, gravity='CC', x=0, y=0);
endfor;
endfor;

SD.ApplySpriteMap(targetfield=field(airplane), descriptors=descriptors,
operation="apply');

13

| More about sprites —aircraft seating allocation example

Empty plane—no “passenger” sprites displayed

i

Only “available-seats” sprites displayed =T

All passenger sprites displayed

(\‘3

b

R Meifbeife] [toolelfle
U NN AN
UEN SN NN
TEE NN AN
NN AN BN
NEE NN SO
VRN DA NN
L S S
S S S L W
VEN NN NN
NN NN N
NN NN SO
NN OO NSO
Lo I S L
URN NN NN
VUNN AN KRR
VNN NN AU
VRN AN NN
VNN AN N
VAR AAN RRA

AR AUS

LG
VNN AN N
LI VL N N W T

e iRctan

Demo:

w4gldev runimage workbnch.img -Tall -/appflags profile=or62demos

application=allocationsystems component=airlineseating command=openscript#561
Note that the code is creating a spritedescriptor definition for each Economy
seat, treating it as a sector, computing each seat’s size and x & y. Then the code
creates a sectormap from the descriptors, and stores it in the “seating plan”
bitmap.

Go to line 265
Note that whenever a passenger is dragged to a new seat, the code just calls the
LastinputAction method, once to identify the passenger
(action="mousedrag_down’) and once to identify the seat
(action="mousedrag_up’).

14

| Bitmapped backgrounds: Transparency, Opacity ©

2 Apply transparency and opacity to ActiveFields (and to sprite icons)

m Using FP_BITMAPCLEAR, UpdBackground with opacity (or spritemap parameter)
overfield.BgPattern = FP_BITMAPCLEAR;

overfield.UpdBackground(cornersize=1, opacity=0.75);

%1 OpenfiOAD = iy
Transparent
region of |
field background
Opaque
(75%) 1
region of /
field background bitmapped background of
underlying field
= iRctian

Demo:

D201504 BitmappedBkgFields -cBitmappedBkg_Opacity_Transparenc

Run the frame
Note that the frame background displays a satellite image of the world, as a
Mercator projection

Rightclick the frame
Note that the world image is overlaid with a field that has transparent areas
(forming the letters of the word "OpenROAD"), and translucent areas (75%
opacity).

Demo:

w4gldev runimage workbnch.img -Tall -/appflags profile=or62demos

application=d201504 bitmappedbkgfields

component=bitmappedbkg_opacity_transparenc command=openscript
Note that the frame background displays a satellite image of the world.
Note that there is a buttonfield overlaying the background, but that field initially
is FP_CLEAR and has no text, so you cannot see it.

Rightclick the frame
Note that the code simply makes the upper field’s background transparent
(FP_BITMAPCLEAR) and translucent (opacity=0.75, set using the UpdBackground
method)

15

/*
** Make the overlying field transparent and 75% opaque
** (overfield is a buttonfield with an image of the word “OpenROAD”.
Underneath is the frame’s
** topform, displaying a satellite image of the world)
%
/
overfield.BgPattern = FP_BITMAPCLEAR,;
overfield.UpdBackground(cornersize=1, opacity=0.75);

15

| O Tagged Value/ltems ®

2 Need to make data and objects more systematically accessible

m Tagged Values/Items

< Taggedvalues are named-value objects and collections.

Tag name

< Every field has them, every frame, class, application, attribute.

2 They allow you to store anything you want, where you need it,
always available, with immediate keyed access:

m Values, text, search-markers, lookuplists, procedures, resources, packages,
objects of any type

- cenfidential € 2 ipyeeptnserclass objects

2 When the frame or class is saved, taggedvalue contents save as well.

i@ctian

16

| ... Tagged Value/ltems ...

Name
Sample animation

% OpenROAD

Value STRINGOBJECT

TAGGED Taggedvalues are named-value objects
VALUE
= Keyedltems STRINGHASHTABLE
e NGB i Key Object STRINGOBJECT
sy - | ot 999_0_99
(=) e, — Key Object TAGGEDVALUE

animation

Key Object PROCHANDLE

function

Sasdes pryotes

[Show delired 3ot « @J

B e tor 12y

! [Trigger IE_TICKPOINT
Modifier key KB

background
ound

B oo nencom canrn iRctan

Demo:

w4gldev runimage workbnch.img -Tall -/appflags profile=or62demos
application=d201504 definedresponses component=progressbars_predefined
command=open

Continue as shown.

In this example, the tooltiptext in the TaggedValue Editor Items Dialog is displaying a
description of the stored defined behavior that drives the marquee bar.
* the marquee behavior is actually a sprite-based animation that moves the
green pulse to and fro
* The description is derived by examining and interpreting the Keyedltems that
make up the behavior definition

The behavior is actually stored in the marquee field, as a TaggedValue object called
(“event_responses”), containing a collection of Items defining the required behavior.
No 4GL code or event is required for the animation.

17

| UsingTaggedValues in the 4GL

FIELDOBJECT*

TaggedValues ARRAY
FetchTaggedValue
*Fields, Frame, Class, and
SetTaggedValue Application source objects,

and Attribute and Method
GetTagText objects, all have the
TaggedValues attribute and

the methods
... plus other methods ...

2 Example use of Value:

m storing and retrieving the previous value of a numeric field:
fld.SetTaggedValue(tag="lastvalue’, textvalue=Varchar(fldvalue)); //stores number

lastvalue = Int4(fld.GetTagText(tag=‘lastvalue’));

//gets number

B ovoeronic ntscimn coperor iEction

fld.SetTaggedValue(tag="lastvalue’, textvalue=Varchar(fldvalue)); //stores the
number

lastvalue = Int4(fld.GetTagText(tag=‘lastvalue’)); //gets the
number
lastvalue_tag = fld.FetchTaggedValue(tag=‘lastvalue’); //gets the

taggedvalue itself

T: It
| Tagged items

Keyedltems
2 Any number, any complexity : (Objects)

m Items can themselves be arrays, hashtables, taggedvalues

Iltems are hashed - key for each item

Pre-store whatever “package” your business function needs

m Even procedure-handles, executables, database contents, ...

m Methods to make this easy

2 Then save the component, and your package saves with it

2 When the application starts up, your package is in the component,
ready to go

m Including the procedures

B covoeomic b copeor iEction

“Procedure-handles”: ProcHandles

ProcHandles have a huge advantage over Call Procedure as a way of invoking frame or

field or userclass procedures:

» Call procedure myproc (or call procedure :myprocname) only works if the calling code
can see the procedure-declaration — in practice this limits callable local procedures to
those declared in the same script

call procedure myproc(...parameters...); //works only if procedure
declaration is visible

* The ProcHandle for myproc incorporates the declaration, so it works from outside the
frame or userclass — under the right circumstances it can even be saved and restored,
or exported and reimported, and it will still work

*
{"* Create ProcHandle for this procedure
*
m/yprochandle = myUserclass.GetProcHandle(name=‘myproc’);
/*
** Execute procedure from different frame, method, procedure
*
m/yprochandle.CaII(...parameters...); //works in much wider range of

19

circumstances

19

| TaggedValue Keys

2 The tag name
m Accesses the tagged value itself
2 The itemkeys

m Eachitem in the tagged value Keyedltems has its own key
m Keys are varchar(256)

m Access methods are FetchTaggedValue and SetTaggedValue

2 Example: storing and retrieving the current triggerfield and event
m Very useful when the user clicks a button, and you need to know which field they
were last working on (might not be the inputfocusfield ...)
form = curframe.TopForm;
status = form.SetTaggedValue(tag=‘lasttrigger#field’, item=curframe.TriggerField);
status = form.SetTaggedValue(tag=‘lasttrigger#event’, item=curframe.CurEvent);

form.FetchTaggedValue(tag=‘lasttrigger#field’, item=Byref(triggerfield));

IIII Adastie) © 2014 At Carporat |‘Sﬂ<:h¢nr\

form = curframe.TopForm;
status = form.SetTaggedValue(tag="lasttrigger#field’, item=curframe.TriggerField);
status = form.SetTaggedValue(tag="lasttrigger#fevent’, item=curframe.CurEvent);

form.FetchTaggedValue(tag="lasttrigger#field’, item=Byref(triggerfield));

20

| Availability and formatting

2 TaggedValues can be

Runtime, designtime, or both Use the Availability property for both
Temporary or permanent of these

Formally defined or ad-hoc < Use TagDefinitions for formal tags

When you are preparing defined behaviors, you don’t want your mistakes saved!
So the “temporary” setting is very useful

tagged_value.Availability = TVA_TEMPORARY;

* But you do not need to use it directly: use the InputEvent LoadEventBehavior, which
includes a MakePermanent parameter.

The TaggedValue Editor uses formally defined tags

* to ensure that the important tags for classes, attributes and fields are listed, whether or
not they have yet been set

* The Files subdirectory contains TagDefinition files to support this

* You can define your own — details are in the Language Reference Guide

[corvoerie© 2010ncsm crparmir I@ctian

21

h Advantages of using Tagged Values

=< Definition, not code

m Tagged valuesreach the areas that database data-definition and object oriented
structuring can’t reach

* Previously, such content was coded in at runtime, where that was even possible
m Information exactly where it is needed — avoiding Hansel and Gretel code

m Much less, much simpler code

- Developers can add properties they need directly, instead of raising
SIRs ...

m Restore the previous value? Public name for error messaging? Allowed values for
this entryfield or attribute? Corresponding database column? Input help?

- Certain features are only possible with tagged items

m Animations, flyins, Windows 7 pulsing, etc:

* Pre-store a list of intervals, a multi-image bitmap, a sequence list, and a trigger, all in
the one taggedvalue

* 6.2 does the rest — no code required

Examples of Hansel and Gretel code / Adhoc trails:
- passing an incrementing counter to a userevent as the Messagelnteger
- including the datatype of a variable in the variable’s name

22

| ... Advantages of using Tagged Values ...

2 OpenROAD itself makes increasing use of tagged values,

m For all the reasons on the previousslide, and

m Because it enables information exchange between the system and the 4GL
<2 Information exchange ...

m System to 4GL:

System-level InputEvents (next section) store mouse information in TopForm tagged

values
In the 4GL, use the InputEvent LastMouseAction method to access this information
m 4GL to system:

The new restyling behaviours are applied — whether at design time or runtime — as

field-level tagged value definitions, using 4GL code

At runtime the system-level processing uses the taggedvalue-related methods to access

these definitions in the frame fields, and execute the behaviours

= iQctan

4GL to System — executing predefined behaviors:

With the new sprites and InputEvent/Response processing, field and frame appearance
can be much richer, and match chosen styles

* There is system support for the underlying generic mechanisms,

* but the actual behaviour of a given style has to be customized, and that means 4GL

So, we (and you) use 4GL to predefine the style behaviour as TaggedValues, and store
them

* See Setup Frame capability

Now OpenROAD runtime can see the stored behaviors in the tagged values when the
frame starts up, and do the work,

* Without any need for 4GL code or events

More about this in the next two sections

23

O Storable Defined (ready-to-use) Behaviors
_—— ——— —

2 OpenROAD 6.2 introduces a major paradigm shift (see @):

@ _.

Field tield
appearance
appearance as
as
. roun
properties bac.kg ourid
image
* AGL Event granularity is whole field * Event granularity is icon (sprite)
* Field shapes are rectangular * Field shapes are complex
* Field “movement” is whole field, * Field “movement” includes
and is limited by widget overhead sprite click, drag and hover,

timed sequences, multiple
independent elements

m The paradigm shift makes it cost-effective to provide all these needed flexibilities
in OpenROAD...

m ..provided we can work at a finer response-granularity than the 4GL events offer

- Confidential € 2014 Actian Corporation @cmﬂ

24

h ... Storable Defined (ready-to-use) Behaviors ...

2 The solution to the granularity requirement involves a further
paradigm shift: inputevents and defined behaviors

Field Field
responses bR
require 4GL resp
can bypass
events and
4GL events
code
* 4AGL-display-event triggers * Mouse-event triggers
* Userevent alerts: CPU-intensive and queued + Heartbeat alerts: efficient and synchronous
* Range of 4GL events is restricted, because: * Response-granularity is unrestricted, so:
* Mousemove etc too costly * Sub-field needs can be met
* 4GL event model is at optimum * (Can respond to more user actions
* Backward compatibility needed = Still backwardly compatible

* Can still invoke 4GL for logic when needed

m Inputeventtriggers are finer granularity than 4GL event triggers

m No 4GL events or 4GL code are involved (except where you actually want them)

n Confidential & 2014 Actian Corporstion Ecmn

25

h The Inputevent-Response model

2 Inputevent-Response elements

m The “inputevents” are not 4GL events, but mouse actions, key actions, user
actions, and timed alerts

m The responses are usually combinations of visual changes, but can be 4GL

procedures
InputEvents Responses

Sprite behaviours,

Mouse actions, Image switches,
Heartbeat alerts, Property changes,

User triggers, Procedure calls,

System info,
* 25 inputevents * 40 properties, full range of sprite

behaviours, user-defined procedures,
multiple simultaneous actions, etc

< Fields respond to inputevents only if enabled for them

R iBction

Two ways to enable a field for inputevents:

fld.SetTaggedValue(tag=‘inputevent_enabled’);

IE.ActivateFields(fields=fields, bitmap=bitmap);

InputEvents: IE_INIT //Initialization (not initialize) event
IE_KEYDOWN IE_RMOUSEDBLCL IE_MOVEPOINT //The most recent move event at this
IE_KEYUP K timepoint
IE_SYSKEYDOWN IE_PULSE //Pulse-alert event (heartbeat alert, every 1
IE_SYSKEYUP IE_MMOUSEDOW second)

IE_MOUSEMOVE N IE_TICKPOINT //Registered heartbeat-alert event
IE_LMOUSEDOWNIE_MMOUSEUP IE_USER //User-defined action (IE_USER+1,
IE_LMOUSEUP IE_USER+2, etc,
|IE_LMOUSEDBLCLKE_MMOUSEDBLC are also available

LK

[E_NCMOUSEHOV
ER
IE_MOUSEHOVER
IE_SETFOCUS

IE_LOSEFOCUS

IF MOIISFEFNTFR 26

IE_RMOUSEDOWN
IE_RMOUSEUP

26

h How are behaviors defined, and how are they stored?

.

2 Each behavior is defined using

m An EventKey string, combining:

The mouse, key, alert, or user action (as an IE_ constant)
The modifier key(s), if any (as KB_ constants)

The response code (as an RE_ constant)

m A Response object, providingthe essential element(s) of the particular response:

StringObject, for an imageindex or spritemap or nested behavior
Field, for a display behavior

ProcHandle, for a 4GL-coded behavior

Cursor bitmap, for cursor-change behaviors

Taggedvalue, for timed/animation behaviors

Arrays, for sets of simultaneous behaviors

m The InputEvent Helper Class has methods that make all of this easy to specify

- Confidential & 2014 Actian Corporstion Ecmn

27

. How are behaviors defined, and how are they stored? ...

All defined behaviors are stored in a field tagged value

m Using the tag name “event_responses”

m The tagged value may belongto a displayfield (for behaviors specific to that
field), or to the frame’s TopForm (for responses common to many fields)

* For example, the Windows7 styling behaviors are defined at TopForm level
Each behavior is stored as one of the tagged value’s Keyeditems

m Using the Eventkey value as the lookup key
m Example—the Windows7 default mouseover highlighting:
* Two stored behaviors, one for the mouseentry, one for the mouseexit

* Each applies a different imageindex to the background bitmap

— sothat a different background displays when the mouse is over the field
Behaviors can be stored permanently or runtime-only

m Permanently: in the frame’s framesource fields,

m Runtime-only: in the frameexec fields, or with availability=TVA_TEMPORARY

i@ctian

28

h ... How are behaviors defined, and how are they stored? —
Example (Windows7 highlighting)
- To highlight on mouseenter, we need:

m Eventkey: IE_MOUSEENTER, KB_NONE, RE_OTHERBUTTON
995 _0_89
m Response: StringObject set to the highlightimageindex
. agn

m Behaviourstored in the frame’s topform

2 We use InputEvent (Helper Class) methods to store the behavior:

eventkey = IE.EventKey(action=IE_MOUSEENTER, modifierkey=KB_NONE,
responsecode=RE_OTHERBUTTON) ;

response = IE.Response(type=‘image’, imageindex=2);

IE.LoadEventBehavior(location=frame.TopForm, eventkey=eventkey,
responsetype="event_responses’, response=response);

29

| ... Storable Defined Behaviors ...
OO0 ShoE
S
ot § =0 et gt
el R
R e e,
i ey 2
Mouse hover v dvememen | O mtiple rsponses
Info-panel T
(% Openr04D (o ® =
Fiest name: “ e
Last name: 'J
Last name
Where issued ¢ -
o TR e e ptar = Marquee and
single word, enter that word. If it is 2 single word
Couy of e o containing aportiophes o hyphens, inciode the Progress bars
apostrophes of hyphens.
If it contains both married and masden last
‘names, combine the names 2 2 single word,
omitting anything that does not form part of
i
For example:
Senith ap. Jones: write smithjones
- ‘-
|
- PP R S xh s [] @CUC\“

Demo:
D201504 DefinedResponses_Panel —cPassportDetails
Run the frame
Hover the mouse over any of the “?” icons
An infopanel describing that field will appear
Note that no runtime code is involved in each popup response

Demo:

D201504 DefinedResponses —cDecodeDefinedBehavior

Run the frame

Continue as instructed (instructions on frame)
Note that each resultant tooltiptext identifies what combination of mouse or
timer action and modifier key will produce what response, based on the
selections that were made.
Note that you can have multiple simultaneous responses to a single action.

30

| ===

| ... Storable Defined Behaviors ...

%3 OpenROAD

\

ButtonField pulsing

\

Search [Navigatio

latacode:

H Ch«k\pumn Videos

Leslie Hanover

%

Telephone #: 555~505\

Balance: $ 45.00
Title

My Little ChidkadeT™ar 23 $5001 3

=

Account # §51

Commit Changes]

Name:

Place:

—_—

N/

A =

\/Mouse highlighting

iQctian

Demo:
D201504_VideosConverted
Run application

Choose Check Out option
Enter 151 as customer account

Ctrl-Shift-Tab to move focus to “Commit Changes”

Hover mouse over Date Out column header

Demo:

D201504 BitmappedTabfolderTabs -cBDPTabHighlighing

Mouse vertically over an unselected tab
* The tab will highlight

Storable Defined Behaviors in Restyling (see Videos demo):
* Restyling is applied to ButtonFields, EntryFields, TableField headers, TabFolder tabs,
SubForms, other compositefields, FreeTrims, Mainbars, RectangleShapes,

ControlButtons.

* Most other fields are already W7 style, since we used native widgets for them.

* Field fonts are changed to Segoe Ul 9

31

B

L 2 T

.. Storable Defined Behaviors — summary of features

Defined as tagged value items
Created and stored using Helper Userclass methods
Predefined using Setup Frames

Executed (for responsive fields):

m Automaticallyin response to WindowManager events

m Automaticallyin response to Hearbeat-scheduled alerts

m Ondemand in response to TriggerEventBehavior4GL calls
Responding with single, multiple or time-based responses

m Image-switch, sprite-display, display-properties changed, 4GL processing,
combinationand animation effects

m Any degree of complexity

Essential for OpenROAD 6.2 Windows7 restyling

IEctan

32

Q Helper Classes ®

2 One more paradigm shift ...

2 New Helper UserClasses, added to the Core application (so always
available):

m InputEvent - provides all the methods to define, schedule, trigger, manipulate or
stop the range of defined behaviours

m SpriteDescriptor— provides all the methods to handlefield-background sprites

m RequestManager— provides frame-management support for displays generated
in an active_display frametemplate

<2 All processing using defined behaviors, sprites, and generated

displays should make maximum use of these classes, as

m They greatly simplify the handling of these features

m They are used throughoutthe example code provided with OpenROAD 6.2
m They are detailed in the documentation

m They can be inherited and customized in helper classes you create

fidential @ 2014 Acti

i@ctian

33

h InputEvent Class

2 Available via a Global Variable in Core, called IE

m No need to declare your own

2 Methods:

EventKey

Response
LoadEventBehavior
RemoveEventBehavior
TriggerEventBehavior

QueueResponse

ActivateFields

LastinputAction

- create an eventkey

- package a response

- store a defined behaviourin a taggedvalue
- remove a stored defined behaviour

- trigger execution of a specified behavior

- put response on the 4GL event queue for execution

- make specified field(s) responsive to input actions
- store details of a mouse action in the attributes,

including which sprite(s) were touched

IEctan

QueueResponse Method:
Frames can only execute properly if called from 4GL code triggered (directly or indirectly)
by an OpenROAD event that has been handled by the 4GL Event Queue. (This is why
OpenROAD Server applications cannot handle frame calls).

InputEvent responses bypass the 4GL Event Queue, so if you need your ProcHandle (4GL
procedure) response to call a frame, for example an info-popup, you need a way for it to
gueue its processing. The QueueResponse Method provides that.

34

| SpriteDescriptor Class

2 Attributes

_)

convert it to a sectormap/spritemap which they apply to the field background

m These define a sprite or sector’s position, size, identity, and (sprite-only) source-
image, opacity, orientation, behaviour

Sprite built-in behaviours: drag, mouseover highlight, cursor-change

Methods:

m ApplySectorMap - apply a sectormap* to the field background

m ApplySpriteMap - apply a spritemap* to the field background

m Spritelmage - return the source and actually-displayed images
m SpriteKey - eventkey for sprite-specific behaviors

m SpriteMap - return the encoded spritemap as a StringObject
m WhichSector - find by location or index and return a sector

m WhichSprite - find by location or index and return a sprite

* These two methods each accept an array of SpriteDescriptor, and internally

i@ctian

35

| SpriteDescriptor and SpriteMap

%4 SPRITEMAP CONVERTER Lo i

SpriteDescriptors are too big and
unwieldyto handle the instant
graphical changes that sprite
Sotarean displaysrequire,

Response Fiags

Spritemap (sortedescriotor
2scasiion 151 9.1

— m So behind the scenes they are
opacy. 0350 encoded as a SpriteMap
eght 15 Heighmumi textstring

sector Gy The SpriteDescriptor Methods
o o mean that you do not need to
ot work with SpriteMaps,

m But you will sometimes see
L) them, in the debugger for
Mg Duoiplw example

This demo utility accepts cut-and-pasted (or typed)
encoded SpriteMap strings, and shows the sprite
settings they contain.

PRI oo s e iRctan

Demo:

D201504_ SpritemapConverter —cSpritemapConverter

Click the button

* the attribute fields on the right fill with values parsed from the example definition
string on the left

Amend any of the SpriteDescriptor attribute field values

Click the button

* the spritemap on the left changes to reflect the new spritedescriptor settings

| RequestManager Class
m Provides generic functions to run standard frame processes in generated frames
Business-ltem browsing, creation and change; drill-into navigation; item copy-cut-paste-
hide; frame initialize and close; tablefield row sort; and more
Each of these can be overdefined or extended by you
Intended for use with active_display template (or your custom version of it)
2 Attributes
m ltem - the principal object the frame is displaying
m ltems - the set of ready-to-display objects for step-through
m Choicelist - a choicelist of Items to display, derived from “filter”
2 Methods:
m RespondToRequest - find and execute the specified function
m AncestorByProperty - find the first parentfield with the specified property
m AllAttributes - return all a UserClass’s attribute definitions
(AttributeObjects), includingthe inherited ones
Ea iQctian

RequestManager, Active_Display, and RespondToRequest

RequestManager is for use with frames created from the active_display FrameTemplate
although you can take advantage of its features for other purposes

Active_display frames treat each enduser action as a request for a particular response
For example: Clicking the Save Button is a request for a Business-ltem-Save
response

Each active_display frame contains just 60 lines of code (which you can add to or delete)
the RequestManager does all the 4GL work, via the RespondToRequest method.

RequestManager holds all the generic functions for these frames
Each of these can be overdefined in the frame by a local procedure.

Overdefining and extending the functions:
In RequestManager, each function is a “case” within one of the following local
procedures:
FrameRequest, DataRequest, TbIRequest, OtherRequest.
Each procedure has the same interface (action=varchar, trigger=fieldobject, info=object).
To override the Close function (which belongs to FrameRequest), for example:
* Create a FrameRequest local procedure in your frame, with the standard interface.
* Init put a case action statement, with a case of ‘close’:
* Inthe close case, put or call the processing you want executed instead of the
RequestManager default.

37

| Helper Class Based Code — Marquee and Progress Bars

e Script Editor: Progressfars_coded NI _
| File Edt Find Font Tools Debug Help 1
[@r & 00 smE@ AXPE P oo 4w o [—
458 endif;
459 [E——
60 progresskey
461 action=IE_TICKPOINT, modifierkey=K8 NONE, responsecode=RE_ANIMATE)j
462
463 pr——— |
464
465
466
467 ypes'redirect’,
468 SR skey, responsefield-bar); =
465 (ELosdtuentbehaviorJocation-bar, responsetypee | on ST Edo Progressis coded [N
:;: File Edt Find Font Tools Debug Help
anz e & 00 Y@ QAXPOY 4 wxny -4 0 -B
a7 ould 543 ** Build the descriptors for this width
‘ 475 . 544 "
476 status = BuildProgressBehavior(bar=bar, progressk| | 545 SOS[1].SetAttribute(spritesourceindex=1,
477 546 g)y X=1, y=1, %');
a7 return ER_OK} 547 SDS[2).SetAttribute(spritesourceindex=2,
479) 548 width=2, height=h2, x=1, y=y2);
4350 . 549 SOS[2].SetAttribute(spritesourceindex=3,
= 550 width-widthbe, height=barh, x=xbe, y=y3, xunit='%', widthunit='%");
B 551
= 552
553 ** Build the response and add it to the responseset
554 s
556 descriptors=sDS, maptype='add');
557
558 endfor;
| sse
560
561 dy f
562
563 IE.L (. *event_responses’,
S64 y=prog! Y P » pe SE);
565 }
566 X
: - 4

w4gldev runimage workbnch.img -Tall -/appflags profile=or62demos
application=d201504 definedresponses_sprites component=progressbars_coded
command=openscript#520
Note the way the EventKey and Response and LoadEventBehavior methods
combine to create and store a defined behavior
Go to line 603
Note that the code samples here are both setup code extracts, not needed at
runtime
They use the InputEvent and SpriteDescriptor Helper Class methods.
Note that the “Compound bitmaps, sprites, animations, defined behaviors” slide
shown earlier has an extract of runtime code,
also using the InputEvent and SpriteDescriptor Helper Class methods.

38

| O Setup Frames ®

< Existing applications have a lot of “setup” code in each frame

m Code thatshould have been run beforehand, if the results could be saved

m Not just in the initialize block either!

< The Property Inspector now has as SetupName option

m Specify the setup frame’s name, and it is called from the frame editor, and
passed the target frame’s framesource (as the “frame” parameter)

m Inthe setup frame put all the setup changes that need to be preappliedto the
framesource, for example:

* Field property changes unavailable in, or too laborious to apply from, the StyleSheet or
Propertyinspector (bias settings, tabfolder settings, tablefield settings, ...)

* Computation of ready-to-use data from fixed-data sources (lists, trees, decodes ...)
* Changes to the target frame’s code (maybe ...)

* (In 6.2) Storage of defined behaviors, InputEvent-activation of fields, ...

m When the setup has run, and the target frame is saved, the setup is in place —
and the target frame’s old setup code is no longer needed

R iRctian

39

... Setup Frames ...
County Demographics setup frame example

9

==)

Initial state

m frame contains:

Placeholder (JPG) satellite
image

Runtime code and fields

m frame also requires:

County demographic data
County boundary coordinates

Mask image, each county
uniquely coloured

Map-ready (BMP) satellite
image

i@ctian

40

Demo:

h ... County Demographics setup frame example ...

= S T |
(o) D —
: ; SETUP FRAME,
TARGET FRAME opened from

Propertylnspector

!
| _Sseiteimage | Coumsy Popuisons ([Coay miomsJPoscos Locuens] J
.

w4gldev runimage workbench.img —Tall -/appflags profile=or62demos
application=D201504_ImageMapping component=countymap command=open
The CountyMap frame is opened for edit
Select the SetupName entry in the Property Inspector
The Setup Frame dialog will appear
Select the "D201504_ImageMapping" application and the "setupcountymap"
frame,
and click OK
The SetupCountyMap setup frame will run
Click the "County Outlines" tab
An outline map of English counties will appear
Click the "Setup the county map" button
After a few seconds each county will be coloured a different shade of grey
Note that the CountyMap frame, the one that the enduser will see at
runtime, has been setup and ready to go:
- the grey (mask) image, the county boundary coordinates, and the cross-
reference of these to the county demographic data, have all been
generated by the setup frame, and applied to the CountyMap frame
Close the setup frame
Run the county map frame

Click any point in SouthEast England on the satellite image to confirm that setup
has worked correctly
- the county under the mouse is outlined in green, the name and
demographic data for that county appear on the right, and a satellite
image of that county appears above the data

41

| Running the Mapping setup-frame

2 What does this frame do?

u---m}

m Parses UK postcode location data

ResgondtoMassors:) e sy * Data is publicly available

m Picks a postcode for each county

m Maps each county boundary and
uniquely colours each county,
creatinga “mask”

* Using FillBitmap

m Parses the county population
data and crosslinks it by colour

m Stores the ready-to-use mapped
datainthe target frame

* When the target frame is saved,
the mapped data will be saved

Sabaine | Gl y m Jobdone.

- Confidential € 2014 Actian Corporation @cum

Around 300 executing statements in the setup frame 4GL, leaving just 70 in the runtime
frame.

| ... County Demographics setup frame example ...

2 Ready-to-use state

m frame now contains:

County demographic data

County boundary
coordinates

. * Mask image, each county
uniquely coloured

oo w1%70 |1 * Map-ready (BMP) satellite
Seefskmt %3 v image
Populstion dencly 5 227

Runtime code and fields

Demo (continued):

Run the CountyMap frame

Click somewhere in SE England.

(Note — the source data was missing some counties; clicking on those gives incorrect
results)

How does it work? Simply and generically:

The colour of the mask at the mouse location identifies the county
That county’s name and data is displayed

That county’s border coordinates are used to draw the outline

A rectangle including the county is extracted as an image

FillBitmap fills everywhere outside of the border with the border colour
The image is displayed treating the border color as transparent.

43

v Providing generic enabling facilities to underpin the
business-need features, both current and future

Bitmapped backgrounds with built-in bordering and double-buffering
Compound bitmaps, sprites and animations

Tagged Values/Items

Storable defined-behaviours

Helper classes and Setup frames

o

Many enabling property and method changes to field and data classes

* TreeViews, TableFields, TabFolders; String & BitmapObjects; and much more

ltems 6 to 8 are

7. Enhanced PropertyChanger facilities X
coveredin the fourth

8. Database and display heuristics presentation
9. DownloadableIngresNet ltems 9 and 10 were
covered in the second

10. LoadnRun deployment presentation

i@ctian

44

| Whatwas covered

2 OpenROAD 6.2 — New generic features in more detail, Part |
m The third of four presentations covering OpenROAD 6.2
2 This presentation was the first of two reviewingin detail the new features in this release

m Featuresillustratedin the presentationrequire the first OpenROAD 6.2 patch
* pl4746or later

OpenROAD

P corvoerie©2010ncsm i I@ctian

45

Confidential @ 2014 Actian Corporation

Thank you

Sean Thrower, OpenROAD Engineering
sean.thrower@actian.com

46

