Elastic Scaling in
Actian Avalanche

Steffen Klabe

steffen.klaebe@actian.com

October 2, 2019

solution designed to run analytical work-

loads on large-scale datasets and runs in
hybrid cloud environments, combining on-premise
environments and public clouds. Moving their ap-
plications to the cloud, users benefit from vari-
ous advantages of the cloud environment, e.g., the
availability of a nearly inexhaustible amount of re-
sources accessible from everywhere, a simple and
predictable pay-per-use pricing model and the elas-
tic scaling of resources to fit varying demands. In
order to exploit the flexible hardware environment
beneath the data warehouse system, we introduce
the elastic scaling feature for Actian Avalanche.

ﬁ ctian Avalanche is a cloud data warehouse

Scalability is a core characteristic of massively paral-
lel processing (MPP) systems. As a static property, it
defines how a system behaves for a specific configura-
tion. Related to a distributed data warehouse system,
scalability describes the query runtime as a function of
the assigned computing nodes. Ideally, query runtime
decreases when adding more computing resources.

On the contrary, elasticity is a dynamic property. It
is defined as the degree a system is able to adapt to
workload changes by provisioning and deprovisioning
resources in an automatic manner. Elasticity aims at
matching provided resources with the current system
load at every point in time.

An Actian Avalanche installation can be scaled using
a system restart and a reconfiguration while the system
is stopped. This has several drawbacks. First, the sys-
tem replays transaction logs during the starting phase,
which is a possibly long-running operation depending
on the log size. Furthermore, all system buffers are
empty after a restart, leading to storage access and
therefore slowing down the first queries after scaling.
Another major drawback is the system’s unavailablity

during the scaling process, which might be critical for
business applications.

To overcome the drawbacks of this “inelastic” way
of scaling, we introduce the elastic scaling feature for
Actian Avalanche. We first discuss the workflow of
the scaling process before explaining how work is dis-
tributed in the scaled environment. As an optional
optimization we present the buffer matching mecha-
nism designed to provide the full system performance
after a scaling process.

The new scaling workflow

Scaling Actian Avalanche can be explicitly triggered by
the user providing the desired cluster size. The internal
process of scaling up a running Actian Avalanche clus-
ter is basically divided into three steps. First, additional
nodes are acquired from the cloud service provider like
shown in Figure 1. In the second step, Avalanche is
started on the new nodes and they are added to the
existing cluster by synchronization with the already
running Avalanche nodes. To make the added nodes
able to participate in query execution, data responsi-
bilities are moved from existing nodes in a third step.

Downscaling the system follows the reverse pro-
cedure. First, data responsibilities are moved away
from Avalanche nodes that are planned to shut down.
These nodes are chosen by the system itself after the
user decided for downscaling. In the second step, the
Avalanche cluster is split into the group of remain-
ing nodes and the group of removed nodes. While
the remaining nodes synchronize themselves and are
immediately ready to continue with the execution of
incoming queries, the group of removed nodes is shut
down in the third step.



Elastic Scaling in Actian Avalanche

1. A new node is acquired

0

e

2. Avalanche is started on the new
node and it is added to the cluster

0 il 2

(((
(@

3. Data responsibility is moved to the
newly added node

0

((
@ -

2
-
=

Figure 1: Scaling process for adding nodes

The scaling process does currently not support con-
current user sessions in the system, which especially
makes it unable to serve read or update transactions
during the scaling process. Therefore, all user sessions
have to be finished before starting the scaling process.

Work distribution

Actian Avalanche uses partitioning as the key concept
to distribute work among system nodes. Partition-
ing is defined as an assignment of each tuple to a
set R;,i € {0,...,d — 1} of tuples, with R; called a
partition. This assignment is based on a partitioning
function f applied to a partitioning key &, mapping
the domain of k to the set of partitions {0,...,d — 1},
while k is also possible to be a combined key. A tuple
t is assigned to partition R; with ¢ = f(k(¢)). These
partitions are afterwards assigned to nodes who hold
the responsibility to execute a query on this partition,
which is the key to distributed query processing. This
partition assignment is stable for consecutive queries
to enable data buffering.

In order to make the partition assignment elastic,
Actian Avalanche uses the approach of overpartitioning.
Running on a cluster of n nodes, the initial number
of partitions d for a table is chosen to be reasonably
higher than the number of nodes n. This way, each
node becomes responsible for several partitions while
the system is able to scale to d nodes without the need
to repartition data to keep all nodes busy.

The Actian Avalanche partition manager realizes
the partition assignment to nodes while also satisfying
requirements of the elastic environment:

1. Load balancing: Assigning an equal number of
partitions to each node is crucial to achieve an op-
timal query performance. As partitions are already
created during table creation, the assignment strat-
egy can only affect the number of partitions per
node, not the size of each partition or their total
number respectively.

2. Lookup time: The mapping partition — node
is evaluated numerous times within each query.
Therefore, the partition manager provides con-
stant lookup time for the mapping.

3. Update time: Scaling the cluster leads to changes
in the partition assignment to achieve a balanced
assignment. The partition manager provides linear
update time for the partition assignments.

4. Keeping co-locality of foreign-key related ta-
bles: The key for node-local processing of join
operators is the co-locality of partitions containing
all join partners. The partition manager ensures
the co-locality of these partitions even after scaling
processes.

5. Minimizing the number of partition reassign-
ments: A node that becomes responsible for a
partition has no buffered data for this partition,
leading to storage access for queries after the reas-
signment. Therefore, the partition manager mini-
mizes the number of reassigned partitions that is
necessary to achieve a balanced assignment.

As its main concept, the partition manager explicitly
stores and maintains the partition mappings. To pro-
vide a lightweight memory consumption, tables having
the same number of partitions form an equivalence
class for which holding a single partition mapping suf-
fices. When the system is scaled using the elastic scaling
feature, all partition mappings are updated by comput-
ing the optimal load balancing while minimizing the
number of reassigned partitions.

Buffer matching mechanism

Scaling an Actian Avalanche installation involves the
reassignment of partitions, leading to storage access to
perform operations on the partition’s data. As a result,
the first queries after a scaling process are heavily im-
pacted by the storage access that is significantly slower

Page 2 of 3



Elastic Scaling in Actian Avalanche

than accessing buffered data in the main memory. Es-
pecially for the case of upscaling the added nodes show
substantially slower performance than other nodes.
The buffer matching mechanism handles this problem
and therefore provides the user with increased system
performance after a scaling process. The main idea is to
exploit the fact that the system already has information
about important data in its buffers before the scaling
process. After partitions are reassigned, the mecha-
nism brings already buffered data into the buffers of
nodes that become responsible for new partitions.

The buffer matching mechanism is designed as a two-
step approach. During the first step, data that needs
to be exchanged is selected. Therefore, nodes that lose
responsibilities for partitions scan their buffers. For
each data block, they determine wether they are still
responsible for the block using information provided
by the catalog and the partition manager. If they are
not responsible for a data block anymore, the block
is selected to be exchanged. The second step covers
the actual data exchange. Each node sends data to
nodes that became responsible for it using a point-
to-point communication. To accelerate the process
and to reduce the need for synchronization, the data
exchange is realized in a multi-threaded manner. Upon
data reception, nodes insert received blocks into their
buffer while the blocks are removed from buffers of the
senders to free buffer space.

The mechanism is integrated in the scaling process.
Being an optional optimization, buffer matching is de-
signed to be fault tolerant to not influence the success
of the actual scaling process. If an error occurs during
the data exchange in a point-to-point communication,
this communication is aborted and all data blocks that
are not completely transfered are flagged to be loaded
from storage instead of using the buffer content.

Evaluation

Our experiments showed a major improvement in the
runtime of the scaling process, accelerating the time to
the first query result after scaling the Avalanche cluster
by a factor 2 to 4, compared to the “inelastic” way
of scaling using a system restart. These experiments
are highly dependent on the actual cluster configu-
ration and used hardware and do not take resource
provisioning time into account, as this may vary for
different cloud service providers. Nevertheless these re-
sults prove the qualitative improvement of the scaling
process. Although the system is not able to handle con-
current transactions during the scaling process, these
experiments also show that the system’s downtime for
scaling is significantly decreased using the elastic scal-
ing feature. Furthermore the feature offers opportuni-
ties for improvements and future projects like allowing
concurrent read transaction, as the system remains in
an operational state during the scaling process.

e ‘ : : —
é 0 . Buffer matching on
S N . + Buffer matching off
&
g 8t . i
(5]
g
g
A
[
] a
OJ -
el T e e e
o 101 i
U
B 8 ° ° ° B
Z el |
e Number of nodes
N ]
2

3 4 5 6 7 8
Query run

Figure 2: Scaled query performance after adding nodes

The buffer matching mechanism also showed to be
a major improvement to the query performance after
scaling the Avalanche cluster, while also being a trade-
off as it adds a minor overhead to the actual scaling
runtime but is able to significantly accelerate query per-
formance after scaling. Being an optional optimization,
the choice to use the feature lies on the user side.

Experimental results for a basic use case of the buffer
matching mechanism is illustrated in Figure 2. In this
experiment we consecutively ran a typical analytical
query while upscaling the cluster between the runs.
When not using buffer matching during the scaling,
query performance drops after the scaling process be-
fore slightly reaching a better performance in the next
runs, which is mainly caused by slow disk access on the
added nodes. On the contrary, query performance im-
mediately improves and reaches the minimal runtime
when scaling the cluster and using buffer matching, as
added nodes already have buffered data for their reas-
signed partitions and therefore can avoid disk access
after the scaling process. As a result, users can imme-
diately benefit from additional resouces they acquire,
which is the behaviosr a user expects from scaling the
system.

References

Klébe, Steffen (2019). “Elastic query processing in Vec-
torH”. MA thesis. [lmenau.

Page 3 of 3



