
 

pg. 1 

 

  

 

 

 

 

 

 

 
A Developer-Centric Approach to 
Modern Edge Data Management 
The case for dumping your file systems and SQLite and 
moving to Actian Zen  
 

A substantial majority of embedded developers in the IoT and complex 

instrumentation space use C, C++, or C# to handle data processing and local analytics. 
That’s in part because of how easy it is to handle direct I/O for devices and internal 

systems components as well as more complex digitally-enhanced machinery through 

some variations of inp() and outp() statements. It’s also easy to manipulate collected 

data using familiar file system statements such as fopen(), fclose(), fread(), and 

fwrite(). This is the path of least resistance.  Almost anyone who takes a programming 

class (or just takes the time to learn how) can use these statements to interact with 
data at the file system level. 

The problem is that file systems are very simple. They don’t do much by themselves. 

When it comes down to document and record management, indexing, sorting, 
creating and managing tables, and so on, there’s only one operative statement: 

DoItYourself(). And we’re not even talking about rare or rocket science-level activities, 

here. These are everyday activities that that you’d find in any database system.  

Wait! It’s the D-word! May as well be the increment of the ASCII character pointer by 

two to the … you know what word.  

We’re among friends, here, so let’s not mince words: Developers of embedded 
applications hate databases, and it’s not hard to appreciate why. Traditional databases 

have always been far too large to deploy into IoT and mobile environments. They’re can 



 

pg. 2 

 

be expensive and difficult to provision; they tend to need constant attention of the 

kind only an expensive DBA can administer. Sure, some newer open source databases 
are somewhat less costly than an Oracle or Microsoft database (though you’ll still 

paying for service and support), but most of these are built for the Cloud. Developers 

building for the IoT or mobile need something designed for the Edge, for a gateway, 
that can be embedded in a device itself.  

Out of the primal ooze 

One open source database has stood out as an exception among all cybersaurs 
described above—a very compact database that is serverless, portable, embeddable, 

and accessible via most popular programming languages: SQLite.  

SQLite has been around for more than 20 years, and it is nearly ubiquitous as a data 
cache in web and mobile applications. As the name implies, SQLite makes use of 

standard query language (SQL) and, unlike other popular open-source SQL databases 

(MySQL, Postgres, MariaDB, etc.), it can operate in a serverless, zero database 
administration (Zero-DBA) manner. In deploying SQLite, developers discovered that 

they could rely on SQL for transaction-oriented data management and forego all the 

DIY file system interactions. Developers also discovered a performance advantage 
when deploying SQLite, as the database could perform block reads and writes of larger 

data sets around 35% faster than a native file management system.  

SQLite provided a step up the evolutionary ladder from simple file management 
systems, and application developers could use it to address a variety of early Edge use 

cases more effectively than they could with flat files. But like many creatures on the 

lower rungs of the evolutionary ladder, SQLite has its limits. The vast majority of 
tomorrow’s edge use cases will involve multiple channels and I/O data rates; multiple 

applications, processes, and threads; the need to manipulate large data sets at speed; 

and, the need to secure data both rest and in transit. SQLite was simply never designed 
to meet these needs.  

Developers who found SQLite to be perfect for single user embedded mobile 

applications and who have tried to use it to build more sophisticated edge 
applications have encountered challenges when trying to accommodate all these 

needs. Today’s response to these challenges is not fundamentally different than it was 

when addressing the shortcomings of simple file management systems: 
DoItYourself(). To stretch SQLite into something that can handle multi-channel, 

multi-process, high-speed Edge data environments, the DIY now involves a mash-up of 

self-developed code, GitHub downloads, and purchases from very small development 
shops providing add-on components for server support, security, and connectivity 

functionality. It’s a more sophisticated level of DIY, but it’s still DIY. 

Stepping up the evolutionary ladder 

A banana slug is more sophisticated than an amoeba, but it’s far less sophisticated 
than, say, a peregrine falcon. When it comes to meeting tomorrow’s Edge and 

embedded app needs, developers need something that can fly, not crawl. 



 

pg. 3 

 

That’s where Actian Zen family of databases comes in. Zen is to SQLite what SQLite 

was to flat file management systems. It provides the full set of capabilities needed to 
meet the needs of modern edge data management.  

Actian Zen Core edition provides developers with the same characteristics that made 

SQLite appealing as a database: Zero-DBA, a serverless option, portability, and 
embedded support for most popular programming languages, including C, C++, and 

C#. Actian Zen extends the access options by including a NoSQL as well as a SQL API 

and extends access even further through SWIG (simplified wrapper and interface 
generator) support, which makes the SQL and NoSQL APIs accessible to developers 

using Python, Perl, and PHP on Windows and Linux systems.  

The evolutionary leap embodied in Actian Zen, though, is that Actian Zen Core edition 
(with a footprint of <5MB) has an analogous Edge edition that runs on a server or 

gateway (with a footprint of less than 50MB), as well as Enterprise and Cloud brethren 

that can run on even more powerful devices and containers (and still take up  less than 
200MB). Every edition is based on the same architecture, so they complement and 

interact with one another like nothing in the world of SQLite. 

Building with Actian Zen 

Incorporating Actian Zen into a code base requires nothing more than adding the 32-

/64-bit C/C++ libraries (btrieveC.h, btrieveCpp.h, btrieveC.lib, btrieveCpp.lib) into a 

project. If you want to use Perl, Python, or PHP, you can also need to add the interface 
libraries for SWIG. SQL calls to Zen are largely the same SQL calls you would use to 

interact with SQLite. But what will be more exciting for IoT and mobile developers 

striving to overcome the performance limitations of SQLite is the option to use the 
NoSQL API (Btrieve 2). The Btrieve 2 API is as simple to use as a file management 

system yet provides access to all the functionality of the underlying database but at 

100X the performance of SQLite. 

How easy is it to interact with a Zen database engine via the Btrieve2 API? Let’s look. 

To start, we must first import the btrieveCpp.h header in the application code: 

#include "btrieveCpp.h" 

Then to connect to the engine, you must create an instance of the btrieveClient 

object: 

BtrieveClient btrieveClient (0x4232, 0); 

That’s all the setup required. The first parameter is a serviceAgentIdentifier, which 

identifies each instance of your application to the engine. It can be any two-byte value 

larger than “AA” (0x4141); in this instance, 0x4232 = “B2.” The second parameter is the 

clientIdentifier, which must be a 2-byte integer. If you are writing a multithreaded 

application, each thread needs to provide a unique client identifier to the engine. 

Now, let’s do some data collection. 



 

pg. 4 

 

Zen data is stored in a file. For example, a file might contain sensor data from a blood 

pressure (BP) monitor. Each record would consist of the follow data: 

• 8-byte time stamp indicating when the BP reading was taken 

• 2-byte integer for a systolic value 

• 2-byte integer for a diastolic value 

• 1-byte character for an evaluation code 

Given the characteristics of the data, we would need to create a file to hold 13-byte 
records. The snippet below defines a BPrecord_t structure that accommodates the 

blood pressure record. The #pragma pack statements ensure that the record is actually 

13 bytes long, with no extra alignment bytes added by the compiler. 

#pragma pack(1) 

typedef struct { 

  uint64_t timeTaken; 

  uint16_t systolic; 

  uint16_t diastolic; 

  char EvalCode; 

} BPrecord_t; 

#pragma pack() 

To create a file for these records, we need to allocate a btrieveFileAttributes object 

and use the SetFixedRecordLength property to specify our record size. 

Btrieve::StatusCode status; 

BtrieveFileAttributes btrieveFileAttributes; 

status = btrieveFileAttributes.SetFixedRecordLength(sizeof(BPrecord_t)); 

You can add other file attributes (that the file be compressed before written to disk, for 
example), but record size is the only required attribute.  

Next you must instruct the Zen engine to create the data file using the FileCreate() 

method on our btrieveClient session object. We can also specify a creation mode to 

indicate if the file should be overwritten if it already exists. 

static char* btrieveFileName = (char*)"Pressures.btr"; 

status = btrieveClient->FileCreate(&btrieveFileAttributes, 

btrieveFileName, Btrieve::CREATE_MODE_NO_OVERWRITE); 

if ((status != Btrieve::STATUS_CODE_NO_ERROR) & 

   (status != Btrieve::STATUS_CODE_FILE_ALREADY_EXISTS)) 

{ 

printf("Error: BtrieveClient::FileCreate():%d:%s.\n", status, 



 

pg. 5 

 

   Btrieve::StatusCodeToString(status)); 

} 

The example above includes error checking using the built in StatusCode 

enumerations in the Btrieve class. For simplicity, we will not show error checking in 

subsequent code samples. 

To insert data into a file you would first open the file: 

BtrieveFile btrieveFile; 

status = btrieveClient->FileOpen(btrieveFile, btrieveFileName, NULL, 

   Btrieve::OPEN_MODE_NORMAL); 

Here, we allocate a btrieveFile object and use our btrieveClient session to open the 

file we previously created. The third status parameter (“NULL” in this example) can be 

used to pass in a Btrieve owner name, which acts a password for securing (and 

optionally encrypting) a data file. Our file does not have an owner name, so we pass in 

NULL. 

To insert a record, we allocate a record buffer for the BPrecord_t structure created 

earlier and then populate the record structure with our data values. Then we use the 

RecordCreate method to insert it: 

Btrieve::StatusCode status = Btrieve::STATUS_CODE_NO_ERROR; 

BPrecord_t record; 

  // Get current system time and convert to microseconds  

time_t now = time(0) * 1000000; 

  //Convert time to Btrieve2 Timestamp format  

record.timeTaken = Btrieve::UnixEpochMicrosecondsToTimestamp(now); 

  //sysdata and diasdata are provided at runtime  

record.systolic = sysdata;  

record.diastolic = diasdata; 

  //Determine the EvalCode from the systolic & diastolic  

record.EvalCode = 'N'; // Default is Normal 

if ((sysdata >= 120 and sysdata < 130) and (diasdata < 80))  

    record.EvalCode = 'E'; //Elevated blood pressure 

if ((sysdata >= 130 and sysdata < 140) or  

  (diasdata >= 80 and diasdata < 90))  

    record.EvalCode = 'H'; //High blood pressure 

if ((sysdata >= 140 and sysdata <= 180) or 



 

pg. 6 

 

 (diasdata >= 90 and diasdata <= 120))  

    record.EvalCode = 'V'; //Very high blood pressure 

if ((sysdata > 180) or (diasdata > 120)) 

    record.EvalCode = 'C'; //Hypertensive Crisis  

  // Insert the record  

status = btrieveFile->RecordCreate((char*)& record, sizeof(record)); 

All these activities execute far faster using the Btrieve 2 API than a standard SQL API, 
delivering a level of performance in an IoT or mobile scenario that SQLite could not 

begin to achieve.  

For modern edge data management, a database holds huge advantages over a file 
management system because of its ability to index and retrieve data quickly. By 

adding indexes to existing Zen data files, you can quickly retrieve records by a 

particular value or in a particular order. You can also add indexes to newly created files 
before any records have been inserted. 

Index creation involves three easy steps: 

1. Set up an index segment 

2. Define index attributes 

3. Add the index to the data file 

Continuing with our example file, we will add an index on the time stamp portion of 
the record. Note that you must open a file before you can add an index to it. 

BtrieveKeySegment btrieveKeySegment; 

BtrieveIndexAttributes btrieveIndexAttributes; 

  // Create a time stamp index segment on the first 8 bytes of the record  

status = btrieveKeySegment.SetField(0, 8, Btrieve::DATA_TYPE_TIMESTAMP); 

  // Add the segment to the Index object  

status = btrieveIndexAttributes.AddKeySegment(&btrieveKeySegment); 

  // Specify the nonmodifiable index attribute  

status = btrieveIndexAttributes.SetModifiable(false); 

  // Create the index  

status = btrieveFile->IndexCreate(&btrieveIndexAttributes); 

That’s it. You’ve just defined an index segment as an 8-byte field starting at record 

offset 0. The data in those 8 bytes will be interpreted as a Btrieve TIMESTAMP. Here’s 
what’s happening above: 

• The AddKeySegment() method appends the btrieveKeySegment instance to a 

btrieveIndexAttributes object to define a single-segment key. 



 

pg. 7 

 

• The SetModifiable() method designates the index as either modifiable (true) or 

nonmodifiable (false). Other attributes can be used to make the index unique or 

specify a particular index number. 

• The IndexCreate() method will add index 0 to the previously opened data file 

associated with the BtrieveFile object. The index will be populated with all 

values currently in the file and will be updated automatically on all subsequent 

insert/update/delete operations. 

After creating indexes, retrieving a record at speed is a straightforward process. There 

are methods for retrieving the first or last record according to the index definition or 
retrieving a particular record by comparing to a provided value. In our example, we are 

going to retrieve the record with the highest time stamp value, which should 
correspond to the record most recently inserted: 

Btrieve::StatusCode status = Btrieve::STATUS_CODE_NO_ERROR;  

BPrecord_t record; 

  // Retrieve last inserted record 

if (btrieveFile->RecordRetrieveLast(Btrieve::INDEX_1,  

  (char*)& record, sizeof(record), 

  Btrieve::LOCK_MODE_NONE) != sizeof(record)) 

{ 

  status = btrieveFile->GetLastStatusCode(); 

  printf("Error: BtrieveFile::RecordRetrieve():%d:%s.\n", status, 

      Btrieve::StatusCodeToString(status)); 

} 

Note: Record retrieval methods do not return a status code like other calls we have 

seen. Instead, the size of the retrieved record is returned by the function call. If the call 
does not return the size as expected, then the GetLastStatusCode() method can be 

used to find out what happened. 

The last argument to the record retrieval methods provides an option to lock the 
record while retrieving it. 

Once you have retrieved a record, you may decide to update or delete it. You cannot 

update/delete a record without retrieving it first. The btrieveFile->RecordUpdate() 

and btrieveFile->RecordDelete() methods are used for these operations. 

When you are finished with a file, close it by calling the FileClose() method on your 

btrieveClient object: 

status = btrieveClient->FileClose(btrieveFile)); 



 

  

 

2300 Geng Rd, Suite 150, Palo Alto, CA 94303 

+1 888 446 4737 [Toll Free] | +1 650 587 5500 [Tel] 

© 2020 Actian Corporation. Actian is a trademark of Actian Corporation and its 
subsidiaries. All other trademarks, trade names, service marks, and logos referenced 
herein belong to their respective companies. (0720) 

Though you probably won’t need it very often, Btrieve2 even provides a method for 

deleting a data file: 

status = btrieveClient->FileDelete(btrieveFileName); 

Before closing your application, you should release your session with the engine by 
calling the Reset() method. 

status = btrieveClient->Reset(); 

So that’s it for basic Create, Read, Update, Delete functionality and, as you can see, it’s 

very simple and straightforward.  

 


