Avalanche
Migration Guide

Teradata to Avalanche

Prepared By: Lynn Hedegard
Date: 9" September 2019

Table of Contents

INEFOAUGCION ..o

Plan Your Migrationto Avalanche........................
Create Your Migration Team..................eeeeeeeeeeeeeeeeeeeeee

High Level Migration Planning

Enterprise Level Considerations

Test and Certification

Description of Existing Environment........................

Identify Components to Migrate to Avalanche

Description of Applications
Description of Source Data (Teradata Systems)

Identify Teradata Database Tables and Sizes

Extracting DDL from Teradata Systems

Teradata Database Objects NOT Needed in Avalanche

Definethe Avalanche System ...

Define Platform Attributes

Set Up Cloud Storage

Define Avalanche Schema

Define Users

Data Distribution

Constraints

Define Tables

Data LoAd PrOCESS......... oo seeees e

Data Load Reference Architecture

Load Datainto Avalanche...................

Staging Data in a Data Lake

Load Data From the Data Lake

Accessing Avalanche.................eeeeeeeeeeee,

Connecting to Avalanche

Connecting to Avalanche on AWS

Appendix 1- Mapping SQL

COore Data TYPES...........coiereeeneiess s

SQL Language Elements

Converting SQL Language Elements from Teradata to Avalanche

Comparison Operators

Built-in SQL Functions

Converting Functions from Teradata to Avalanche:

SELECT Statement

Converting SQL Queries from Teradata to Avalanche:

QUALLIFY Clause Conversion:

CREATE TABLE Statement............

Converting CREATE TABLE Statements from Teradata to Avalanche

Column Options and Attributes

Temporary Tables

CREATE PROCEDURE Statement.......

Converting Stored Procedures from Teradata To Avalanche

Procedural SQL Statements...........................

Avalanche Migration Guide (Teradata to Avalanche)

Variable Declaration and Assignment 22

Condition Handler: 22
Cursor Declarations and Operations 23
Executing Dynamic SQL Statements 24
Flow-of-Control Statements 24
Other Statements and Procedural Language Elements 24
Other SQL Statements 25
Converting other SQL statements from Teradata to Avalanche: 25
Error Codes and Messages 25
Mapping error codes and messages from Teradata to Avalanche: 25
Appendix 2 - Detailed Data Type Mapping ..., 26
NUMEHC DAta TYPES..............oooooeooveveeeeeereeeeeeereeeereeeseeesesessessssssesssssssssesssseseee 26
Date/Time Data Types 27
Interval Data Types 27
Character Data Types 30
Period Data Types 3]
Byte Data Types 31
UDT Data Types 31
Appendix3-Glossary of TermS ... 32

ii Avalanche Migration Guide (Teradata to Avalanche)

Introduction

Introduction

Actian Avalanche (hereafter Avalanche) is a fully managed cloud data warehouse
service. Avalanche enables you to easily create and use data analytic services in the
Actian Cloud (Amazon Web Services or Microsoft Azure) without having to deal with
traditional operational management of software, hardware, and all the associated
management and monitoring systems. Using Avalanche involves a simple five-step
process:

Set up an AWS or Azure account
Set up an Avalanche account
Create a cluster

Load data

5. Query your data

HWN

Avalanche is scalable — from modest-sized data warehouse deployments to massive
data repositories. Built with component cluster architecture, your organization can
optimize the IT expense structure by provisioning only those compute resources
necessary for the current workload. Moreover, if you need to temporarily suspend your
analytic service, the compute resources can be disabled, while the data remains in AWS
or Azure storage systems.

The purpose of this guide is to provide a high-level overview of the steps necessary to
migrate an existing Teradata environment to the Avalanche service. Enough detail is
provided to achieve this goal without getting too deep into the myriad technical details
and options. Detailed instructions for initial setup, configuration, ETL, management, etc.
are covered in various Avalanche User Guides, and will be referenced wherever
appropriate.

The intended audience of this content includes DBAs, migration architects, program
managers, and others who need to understand the methodology regarding migration of
their existing environment to the Avalanche service.

Avalanche Migration Guide (Teradata to Avalanche) 1

Plan Your Migration to Avalanche

Plan Your Migration to Avalanche

Create Your Migration Team

You must identify the people in your organization who will participate in the migration
effort. Some key roles include:

e Program manager

e Migration architect

e Application architect

e Data architect

e Quality assurance manager

One person may act in one or more of the roles mentioned above, but someone should
be assigned to each of the roles.

High Level Migration Planning

The planning you make prior to executing the

e e e T
migration process will directly affect the success i s o
. Production Instance Production Instance
you achieve with migration project.
N
Actian recommends that your first migration have A
a minimal amount of change to high-level systems
and processes. As substantial changes are made to — ~ S
. . . Test/Cert Instance Test/Cert Instance
processes in the new environment, it becomes
. . . | [I}
more difficult to identify the source of problems - L b>
are they the result of poorly made architectural
assumptions or decisions, or are they the result of — —
errors in the porting of a given process? S e~
The migration architect should identify which P
analytic environment will migrate to Avalanche.
Each analytic environment should have a separate [—
——— S —

migration plan.
Migration of Operational Environments

Within each operational environment, there will be

separate databases that support various
applications such as Finance, HR, CRM, Marketing,

etc. You should create a separate database (i.e. - - g "
schema) within Avalanche that maps to the Toitn ey L
associated database from Teradata. N
Finance E > Finance
1
— =
N
HR
—
— e p—— —
N
CRM CRM
L —— P -

Migration of Databases

2 Avalanche Migration Guide (Teradata to Avalanche)

Plan Your Migration to Avalanche

Enterprise Level Considerations

Here is a high-level list of topics to consider during your planning stage. We will delve
into each topic in more depth in subsequent sections.

Applications: Identify which applications will migrate to the Avalanche environment.
Determine how these applications interact with their respective databases. Most
“analytic” applications are primarily read-only (although they might persist
temporary or intermediate data). "Operational" applications (e.g. call center apps,
manufacturing control, or delivery logistics) contain a mixture of analytical
operations coupled with record-keeping operations. ldentify any application
processes that require transactional semantics.

Databases: Identify which database instance(s) and database(s) support these
applications. These databases will be the focal point of the migration to Avalanche.
For any given data set in the database, are there special security requirements (e.g.
restricted access, need for encryption, data obfuscation, etc)? If you are a multi-
national organization, are there any special regulatory consideration for data that
might leave the region?

Database Objects: Identify which database objects will be migrated (e.g., tables,
views, stored-procedures, etc.).

Data-Sources: Identify the data source(s) that feed these databases. You should
consider the geographical location of these databases and the network bandwidth
available between these systems and Avalanche.

Data Integration: Identify which data integration tools are currently in use. Do you
perform ETL, ELT, special data cleansing processes, or other operations? How often is
this data acquired and loaded into the database? Are there any SLAs regarding
when a given data load job begins, and needs to be complete?

Users: Identify the users that will interact with the applications being migrated. In
many cases, an end-user interacts with the database through a “system-of-
engagement” (e.g., internal systems, such as finance, marketing, CRM, etc., as well as
Bl tools, such as QLIK, Looker, Tableau, etc.). How will applications access Avalanche?
What user ID(s) will the applications use? Will the applications use session pooling?
Will certain applications have restricted access to certain data items in Avalanche?
Also, you should identify those human users who will access Avalanche directly.

Security: Identify user ID(s), and their associated roles and permissions. Identify what
methods will be used for authentication, authorization, accounting, and logging.

Network: How will your applications and end users connect to the Avalanche
service? Based on your organization's internal security policies, changes may be
required to firewall settings, port access, etc. in order to facilitate access to cloud-
based services.

Operational Procedures: Operational procedures sometimes can be hard to quantify,
but this is why you should examine them. Will any operational procedures need to
be modified in order to execute in a cloud-based environment? To ensure that your
migration completes with minimum impact to the enterprise, walk through these
procedures with an eye for adapting to a cloud-based environment.

Avalanche Migration Guide (Teradata to Avalanche) 3

Plan Your Migration to Avalanche

e Operational Environments: Most organizations have a development environment,
test/certification environment, and a production environment. While these
environments will be similar in nature, each will have a few unique characteristics.
Thus, there should be a separate migration plan for each environment.

Test and Certification

After you have defined the high-level systems and processes that will migrate to
Avalanche you need to develop a test plan to validate their functionality in the new
Avalanche environment. You should devise a methodology to validate that a given data
set in Avalanche matches the associated data set in Teradata.

In the current state of practice, few database systems remain unchanged for very long.
Thus, it may be worthwhile to consider making a checkpoint of a given source database
so that the comparison process between the Teradata data and the Avalanche data can
be completed with a minimal number of exogenous variables.

4 Avalanche Migration Guide (Teradata to Avalanche)

Description of Existing Environment

Description of Existing Environment

Identify Components to Migrate to Avalanche

In this step you will examine your existing environment and determine which
components will migrate from your existing environment to the Avalanche
environment.

1.

Collection of Applications: The migration architect who is planning this
migration must identify those application that will be migrated to the Avalanche
service. Examples include:

e Executive sales dashboard

e Internal applications (e.g. Finance, HR, Logistics, Factory Management, etc.).

e Customer sales portal

e Customer service portal

e Others

Data Objects Used by Applications: For each of the applications identified above,
determine the data set(s) are required for the application to perform its intended
services. These will include lists of

e Existing database tables used by the applications

e Stored Procedures used by the applications

e Existing non-database objects used by the applications

Data Acquisition Processes:

e Current data integration tools used

e Current data load and/or refresh rates

¢ Network considerations

Management Subsystem:

e List of existing user and/or application profiles and roles

e List of current security policies

e Description of expected up times, reduced access, maintenance periods, etc.)
e Current SLA policies (e.g. response time, throughput, etc.)

Avalanche Migration Guide (Teradata to Avalanche) 5

Description of Existing Environment

Description of Applications

The migration architect should create an inventory of applications that will migrate to
the new Avalanche environment. These applications will fall into one or more of the
following categories;

Dashboard Applications: These applications are generally “report-based” applications
used to understand the current state of various organizational processes. Users may
have the ability to tailor a report to their specific need, but in general, these
applications do not modify the database in any significant fashion. Examples
include sales reports with dimensional attributes, such as revenue by product,
revenue by region, revenue by date, defects by product, etc.

Customer Centric applications: These applications can be considered as systems-of-
engagement, interacting with the customer to provide reporting services, marketing
campaigns, and a limited number of transactional services, such as user profile
updates, scheduling on-site work, etc. These systems should not be confused with
high-volume OLTP systems.

Data Science Based Environments: A significant amount of data mining and data
science activity can migrate to the Avalanche environment. These applications are
dominated by bespoke tools written in python, Scala, R, etc. It is imperative that the
migration architect identify the data sets used by the data science teams and ensure
that historical data is migrated to Avalanche - and that current data from various
operational processes is propagated to the new Avalanche environment.

ERP Applications: These applications are generally “business planning” applications
used to control and manage various organizational processes. As such, they have
both frequent updates, as well as frequent query activity (Avalanche is well-suited for
these usage profiles).

Avalanche Migration Guide (Teradata to Avalanche)

Description of Existing Environment

Description of Source Data (Teradata Systems)

This section provides an inventory of Teradata elements that should be identified during
the planning stage.

Identify Teradata Database Tables and Sizes

The first step of this process is to identify each Teradata database that will migrate to
Avalanche. For each database, identify the set of tables that are included in the migration.
For these tables you should determine number of rows, and the approximate size of a
row. This data will be used to calculate the approximate size of the data set when it
migrates to Avalanche.

You may use the following query to identify all user tables in a given Teradata system.
/*

For Teradata Systems

DBC.TABLESIZE and DBC.DISKSPACE are the systems tables that
contain system information regarding space utilization.

This query returns a list of tables with the
. Name of the person who created the table
. When it was created
. Who last altered the table
. When it was last altered
. When it was last accessed —- Note:

How big the table is in MB.

Result is returned in GB.
Note: If an object existed prior to turning on usecount,

and it has not been accessed since usecount was turned on,
then the last access will be null.

X5 o ok ok ok o X X o o o 3k 3k X kX X %
o Uk W

*

Lynn Hedegard
*/
SELECT
tbl.databasename,
tbl.TABLENAME,
tbl.CreatorName,
tbl.CreateTimeStamp,
tbl.LastAlterName,
tbl.LastAlterTimeStamp,
tbl.LastAccessTimeStamp,
SUM (currentperm) / (1024*1024) AS Table_Size_MB —— The tables are spread over
the AMPs, so we have to sum the values
FROM dbc.tablesV tbl
LEFT JOIN dbc.tablesize m¥Ysize
ON tbl.databasename = mYsize.databasename
AND tbl.TABLENAME = mYsize.TABLENAME
GROUP BY 1,2,3,4,5,6,7
WHERE tbl.databasename = 'My_Database'
AND tbl.TableKind <> 'V'
ORDER BY tbl.TABLENAME;

SELECT b.databasename, a.tablename, a.CreatorName, a.CreateTimeStamp,
a.LastAccessTimeStamp,
sum (currentperm) / (1024*1024)
FROM dbc.tables a
inner Jjoin
dbc.tablesize b
on a.tablename=b.tablename
and a.databasename=b.databasename
group by 1,2,3,4,5 ;

Avalanche Migration Guide (Teradata to Avalanche) 7

Description of Existing Environment

Extracting DDL from Teradata Systems

One method to obtain the Data Definition Language (DDL) for tables you plan to
migrate to Avalanche is to use Teradata's Teradata Studio.

You can generate DDL for a database, database objects, or both using the Cenerate DDL
wizard. The generated DDL will be placed into a .sqgl file. Use the following steps to
generate the DDL:

1. Display the Query Development perspective.

2. In the Data Source Explorer, right-click a database, table, user-defined function,
user-defined datatype, or a database view.

3. Select the model elements (e.g., DROP statements, CREATE statements,
comments) to include in the DDL script and click Next.

4. Select the model objects (e.g., databases, tables, views, etc) to include in the DDL
script and click Next. The object type determines which model object options are
available.

5. Select Save and run DDL options (e.g., Folder Name, File Name, etc.), then click Next.

6. Click Finish

8 Avalanche Migration Guide (Teradata to Avalanche)

Description of Existing Environment

Teradata Database Objects NOT Needed in Avalanche
The following list of tables are used by the Teradata system, but should not be part of
the migration process.

e DBC

e CRASHDUMPS

¢ DBCMNGR

e EXTERNAL AP

e EXTUSER

o LOCKLOGSHREDDER

e QCD

e SQLJ

e SYS CALENDAR

o SYSADMIN

e SYSBAR

e SYSIDBC

o SYSLIB

o SYSSPATIAL

o SYSTEMFE

e SYSUDTLIB

e SYSUIF

e TD SERVER DB

e TD SYSFNLIB

e TD SYSGPL

e TD_SYSXML

e TDPUSER

e TDQCD

e TDSTATS

e TDWM

Avalanche Migration Guide (Teradata to Avalanche)

Define the Avalanche System

Define the Avalanche System
Define Platform Attributes

Defining the Avalanche system is a straightforward process. Begin by estimating the
total UNCOMPRESSED size of the complete data to be processed by Avalanche. A
convenient and conservative estimate for the compression ratio is 4. This number is a
conservative estimate and is divisible by 2. For example, if you currently have 20TBs of
data, the Scomp Value would be 20/4 or 5TB of compressed data.

The following calculations summarize the calculations
Stotar = Estimated TOTAL size of all UNCOMPRESSED data to be loaded into Avalanche.
Comp = The expected compression Ratio for your source data
SComp = Srtotar /Comp
AUs = [Scomp /2]
The number of AUs that you have just calculated will be used when you provision the
cluster.

Set Up Cloud Storage

On AWS, create an S3 bucket. It is important to locate your S3 bucket in the same AWS
region as your Avalanche service. S3 is used to stage your table data before it is loaded
from S3 into Avalanche.

On Azure, create an Azure Data Lake Storage (ADLS) Gen2 storage account with a
hierarchical namespace which provides a native directory-based file system. ADLS is
used to stage your table data in Azure before it is loaded into Avalanche.

10 Avalanche Migration Guide (Teradata to Avalanche)

Define the Avalanche System

Define Avalanche Schema

Avalanche uses the namespace SchemaName.ObjectName.

In Avalanche, users and schemas are essentially the same thing. You can consider that a
user is the account you use to connect to a database, and a schema is the set of objects
(tables, views, etc.) that belong to that account.

Databases from Teradata maps to schemas in Avalanche. Typically, production schemas
will belong to secure user accounts where access is controlled.

Define Users
In Avalanche, groups and roles can simplify control of database access. Groups are used

to apply permissions to a list of users, while roles are used to associate subject privileges
and permissions with an application.

To create a group, use the SQL statement:
CREATE GROUP inside_sales ;
Users can be added to a group by specifying:
ALTER GROUP inside_sales ADD USERS (dannyh, helent) ;
Users can be assigned a default group:
CREATE USER bspring W TH PASSWORD=' secret', GROUP = engineering ;
or
ALTER USER bspring WTH GROUP = engineering ;

Data Distribution

Avalanche tables are either partitioned or not. Unpartitioned tables are read into cache
by each node and are sometimes referred to as “replicated tables.” Unpartitioned tables
are generally smaller tables by the number of rows in the schema (for example,
dimension tables).

Partitioned tables (sometimes referred to as “sharded” tables) are managed as multiple
“‘chunks” in which a given chunk (partition) resides on a given node. Medium-to-large-
sized tables (for example, large dimension and fact tables) are more efficiently
processed as partitioned tables because each node needs to only deal with the
partitions of the table that are stored on that node.

Following is the syntax for partitioning:

CREATE TABLE enpl oyee (
enp_no INTEGER NOT NULL NOT DEFAULT,
enp_nane CHAR(32) NOT NULL NOT DEFAULT,
dept _no I NTEGER,
enp_rating INTEGER)
W TH
PARTITION = (HASH ON enp_no DEFAULT PARTITIONS);

Avalanche Migration Guide (Teradata to Avalanche) n

Define the Avalanche System

The DEFAULT keyword denotes the pre-configured number of partitions by cluster based
on Avalanche Units size for high performance. To specify no partition, use the phrase WITH
NOPARTITION.

Constraints

You can specify constraints to ensure that the contents of columns fulfill your database
requirements.

Ordinary (enforced) constraints are always checked at the end of every statement that
modifies the table. If the constraint is violated, an error is returned and the statement is
aborted. If the statement is within a multi-statement transaction, the transaction is not
aborted.

Constraints can also be declared as NOT ENFORCED. This allows the database designer
to describe a constraint (such as a referential relationship) without the overhead of
checking the constraint. The assumption is that the constraint will be enforced
externally in some way, and therefore the DBMS does not have to do it. The constraint
description is available to the query optimizer and to external query generators, allowing
better query plans or better queries to be generated. If the actual data violates the non-
enforced constraint, incorrect results may occur.

Constraints can be specified for individual columns or for the entire table. For details, see
table-level and column-level constraints.

The types of constraints are:

e Unigue constraint-Ensures that a value appears in a column only once. Unique
constraints are specified using the UNIQUE option.

e Referential constraint-Ensures that a value assigned to a column appearsin a
corresponding column in another table. Referential constraints are specified using
the REFERENCES option.

e Primary key constraint-Declares one or more columns for use in referential
constraints in other tables. Primary keys must be unique.

Additional column-level constraints for masking or encrypting sensitive Pl data is
available in Avalanche. Here are some examples:

Create a table in which the Social Security number is encrypted using AES 256-bit
encryption:

CREATE TABLE socsectab (
fname CHAR(10),
I name CHAR(20),
socsec CHAR(11) ENCRYPT)
W TH ENCRYPTI ON=AES256, PASSPHRASE='decoder ring', NOPARTI TI ON;

Create a table with the address and salary columns masked:

CREATE TABLE enpl oyee(
nane VARCHAR(20),
address VARCHAR(20) MASKED,
salary FLOAT MASKED AS 0)

12 Avalanche Migration Guide (Teradata to Avalanche)

Define the Avalanche System

W TH ENCRYPTI ON=AES256, NOPARTI TI ON;

Define Tables

You will use the DDL statements extracted from the Teradata system(s) to create your
Avalanche tables.

Avalanche Migration Guide (Teradata to Avalanche) 13

Data Load Process

Data Load Process

Data Load Reference Architecture

This section describes how to perform an initial data load from an existing Teradata
system to an Avalanche system. For this description we will use an example of data
migration from a CRM database on Teradata to a CRM database on Avalanche.
Furthermore, we presume there are three tables in the CRM database, labeled T1, T2 and
T3.

Data Center Data Center
Teradata Instance AWS 53 Avalanche
— 1 77— ey \
CRM i FastExport — P T2 §F 17— PolZcuaE | > SPARK 7 CRM

= T3 —» T3.csv /

The first step in this process is to export the three tables from the CRM database on
Teradata to CSV files. The recommended method for this is to use the Teradata utility
known as FastExport. This utility is used to export data from Teradata tables into flat
files. Data can be extracted from one or more tables using a Join command. Since
FastExport exports the data in 64K blocks, it is useful for extracting large volumes of
data.

Consider the following Customer_Table:

Cust _IDFirstNane Last Nane BirthDate
101 M ke Janes 1/5/1980
104 Al ex Stuart 11/6/1984
102 Robert Wllians 3/5/1983
105 Robert Janes 12/ 1/ 1984
103 Peter Paul 4/ 1/ 1983

14 Avalanche Migration Guide (Teradata to Avalanche)

Data Load Process

The following code is an example of a FastExport script that exports data from the
customer table and writes into a customerdata.csv file.

. LOGTABLE tduser.custoner_log;
. LOGON 192. 168.1.102/dbc, dbc;
DATABASE t duser;
. BEGIN EXPORT SESSIONS 4;
. EXPORT OUTFILE custonerdata.csv
MODE RECORD FORMAT TEXT;
SELECT CAST(Cust_ID AS CHAR(10)),
CAST(FirstName AS CHAR(15)),
CAST(Last Nane AS CHAR(15)),
CAST(BirthDate AS CHAR(10))
FROM
Custoner;
. END EXPORT;
. LOGOFF;

The script can be saved with a name, such as export_customer.fx. The following
command can be used to invoke the script.

fexp < export_custoner.fx

Following the completion of the FastExport job, you will need to copy the CSV files to your AWS S3
bucket.

Load Data into Avalanche
Staging Data in a Data Lake

Transferring large amounts of data may be time-consuming and expensive. Use an AWS
Snowball or Azure Data Box to easily and securely move your unloaded and converted
UTF-8 files to the cloud.

Alternatively, use AWS Console or Azure Portal in a browser to upload the directories
and files to an S3 bucket or ADLS directory.

Optionally, both AWS and Azure provide a command-line interface (CLI) that can be
downloaded and installed to move data to cloud storage.

Choose your preferred transfer method and upload your data to cloud storage.

Load Data From the Data Lake
Avalanche uses external tables to load data from S3 or ADLS.

To create the external table for data with a header row (S3 example):

CREATE EXTERNAL TABLE parts_s3 (
p_partkey INTEGER NOT NULL,
p_nane VARCHAR(55) NOT NULL,
p_nfgr CHAR(25) NOT NULL,
p_brand CHAR(10) NOT NULL,
p_type VARCHAR(25) NOT NULL,
p_size INTEGER NOT NULL,
p_container CHAR(10) NOT NULL,
p_retailprice DECIMAL(18,2) NOT NULL,
p_coment VARCHAR(23) NOT NULL

) USING SPARK W TH

Avalanche Migration Guide (Teradata to Avalanche) 15

Data Load Process

REFERENCE=' s3a:// <bucket >/ part.tbl*', FORMAT=' csv', OPTIONS=("' header' ='true','delim
ter'='"]");
Important! Ensure that your external table column names match the names used for
columns in your source data header row.
You can now manipulate the data using standard SQL against the external table.

To load data into your table, use standard SQL. To load the parts table from external
table parts_s3, use an INSERT statement:
INSERT INTO parts SELECT * FROM parts_s3;

This statement reads the data from the external table “parts_s3”, which points to the
data on S3 and inserts it into the native Avalanche table “parts.”

16 Avalanche Migration Guide (Teradata to Avalanche)

Accessing Avalanche

Accessing Avalanche

Connecting to Avalanche

Connecting to Avalanche on AWS

After your Avalanche cluster has been created, a hostname is provided. This is a unique
label assigned to the cluster that identifies the device for web and database
communications.

Hastname:*) 0d052ff9afd60905f vpaasstage.actiandatacloud.com

Clicking the hostname opens the Connect to Your Avalanche Cluster Dialog.

When you click this button, a pop-up dialog displays the various cluster connection
strings for JDBC and ODBC connections. Note that you will see a pop-up box similar to
the following diagram, but the values will be different for your instance.

Connect to Your Avalanche Cluster x

1..JDBC URL/Connection string
jdbc:ingres://0d052ff9afd60905f.vpaasstage.actiandatacloud.com:27839/db;encryption=on;

To include authentication in the connection string and/eor additional parameters, you can add

UID=dbuser;PWD=<password><additionalparameters>

]

. ODBC URL/Connection string
DRIVER={Ingres};SERVER=@0d052{f9afd60905f.vpaasstage.actiandatacloud.com,tcp_ip,27832;DATABASE=db;

To include authentication in the connection string and/or additional parameters, you can add

UID=dbuser;PWD=<password=;<additionalparameters=

L

. Virtual node connection string for connecting from Bl tools

@0d052{f9afd60905f vpaasstage.actiandatacloud.com,tep_ip,27832

For user/database name, please refer to the generic connection settings section below

4. Actian SQL CLI (interactive shell)
sgl +user=dbuser @0d052ff9afd60905f.vpaasstage.actiandatacloud.com,tcp_ip,27832::db

w

. Actian SQL CLI (useful for running queries from a file by redirecting stdin)
sgl @0d052ff0afd60905f. vpaasstage. actiandatacloud.com,tcp_ip,27832[dbuser<password=]::db

6. Generic Connection Settings
Host: 0d052ff9afd609205f.vpaasstage.actiandatacloud.com
JDBC/.NET Port: 27839
ODBC Port: 27832
Database: db
User name: dbuser

Driver property: encryption=on (JDBC)

This Avalanche Cluster can only be reached by your whitelisted application IP addresses

Select and copy the connection string for the appropriate database access middleware
you plan to use with your applications. Note that the connection string will work only
from machines with a whitelisted IP address.

Avalanche Migration Guide (Teradata to Avalanche) 17

https://docs.actian.com/vector/avalanche/User/Connect_to_Your_Avalanche_Cluster_Dialog.htm#ww614659

Accessing Avalanche

18

Avalanche Migration Guide (Teradata to Avalanche)

Appendix 1- Mapping SQL

Appendix 1-Mapping SQL
Core Data Types

Data type mapping between Teradata and Avalanche:

NUMERIC(p, s)

FLOAT

REAL

DECIMAL(p, s), DEC(p, s)

DOUBLE PRECISION

Fixed-point number
Fixed-point number
Double precision floating-point number
Double precision floating-point number

Single precision floating-point number

Teradata Description Avalanche
INTEGER, INT 32-bit integer INTEGER
BYTEINT 8-bit integer, -128 to 127 TINYINT
SMALLINT 16-bit integer SMALLINT
BIGINT 64-bit integer BIGINT

DECIMAL(p, s)
DECIMAL(p, s)
FLOAT
FLOATS

REAL

SQL Language Elements

Converting SQL Language Elements from Teradata to Avalanche

Teradata

Description

Avalanche

exp MOD exp2

ACTIVITY_COUNT

Get the number of affected rows

Modulo (remainder) operator

SQL%ROWCOUNT

MOD(exp, exp2)

Comparison Operators

Teradata | Description Avalanche

exp EQ exp2 Equal exp = exp2
exp LE exp2 Less than or equal exp <= exp2
exp LT exp2 Less than exp < exp2
exp NE exp2 Not equal exp <> exp2
exp GE exp2 Greater than or equal exp >= exp2
exp GT exp2 Greater than exp > exp2

Avalanche Migration Guide (Teradata to Avalanche)

19

Appendix 1- Mapping SQL

Built-in SQL Functions

Converting Functions from Teradata to Avalanche:

Teradata Description Avalanche
DATE Get the current date (year, month and day) SYSDATE

TIME Get the current time with fraction SYSTIMESTAMP
ZEROIFNULL (exp) Replace NULL with @ NVL(exp, ©)

SELECT Statement

Converting SQL Queries from Teradata to Avalanche:

Teradata Avalanche
SEL keyword Converted to SELECT
SELECT without FROM clause SELECT .. FROM dual

QUALIFY Clause Conversion:

Teradata Avalanche

SELECT c1 SELECT * FROM

FROM t1 (SELECT c1,

WHERE c1='A' ROW_NUMBER() OVER (PARTITION by c1 ORDER BY cl1) rn
QUALIFY FROM t1

ROW_NUMBER() OVER WHERE c1='A'

(PARTITION by cl ORDER BY c1) =1) WHERE rn = 1

20 Avalanche Migration Guide (Teradata to Avalanche)

Appendix 1- Mapping SQL

CREATE TABLE Statement
Converting CREATE TABLE Statements from Teradata to Avalanche

Teradata

Description

Avalanche

MULTISET

[NO] FALLBACK
[NO] BEFORE JOURNAL

[NO] AFTER JOURNAL

DEFAULT MERGEBLOCKRATIO
PRIMARY INDEX (col, ..)

UNIQUE PRIMARY INDEX

CHECKSUM = DEFAULT | val

Allows duplicate rows unless
a unique is key defined

Store a row copy

Store before and after images
of data

Calculate checksum
Combine small blocks
Hash partitioning

Unique hash partitioning

Keyword not required, removed

Clause removed

Clause removed

Clause removed
Clause removed
PARTITION BY HASH (col, ..)

UNIQUE and PARTITION BY HASH

Column Options and Attributes

Teradata

Description

Avalanche

TITLE 'title’

FORMAT format’
CHARACTER SET name

CASESPECIFIC

COMPRESS val | (val, ..)

Column title

Display format
Column character set
Case sensitive comparison

Column values to compress

Removed from CREATE TABLE, can be used
as alias in queries

Removed from CREATE TABLE
Not supported, removed
Default, keyword removed

Clause removed

Temporary Tables

Teradata

Description

Avalanche

CREATE VOLATILE TABLE

PRIMARY INDEX

ON COMMIT DELETE |
PRESERVE ROWS

Temporary table that exists
until the end of session

Temporal table can be
partitioned

CREATE GLOBAL TEMPORARY TEMPORARY TABLE

Temporary tables cannot be partitioned

ON COMMIT DELETE | PRESERVE ROWS

Avalanche Migration Guide (Teradata to Avalanche) 21

Appendix 1- Mapping SQL

CREATE PROCEDURE Statement

Converting Stored Procedures from Teradata To Avalanche

Teradata Description Avalanche

CREATE PROCEDURE | REPLACE
PROCEDURE name

CREATE OR REPLACE PROCEDURE name

When without
name() name
parameters

IN | OUT | INOUT param

IN ouT IN OUT datat
datatype(length) param | | atatype

Number of returned
DYNAMIC RESULT SETS num Clause not required, removed
result sets

No AS keyword before outer

BEGIN END block IS keyword added

Declarations are inside BEGIN

Declarations are before BEGIN END block
END block

Procedural SQL Statements

Converting procedural SQL statements used in stored procedures, functions and triggers
from Teradata to Avalanche:

Variable Declaration and Assignment

Teradata Description Avalanche

DECLARE var Variable declaration var

datatype(len) [DEFAULT value]; datatype(len) [DEFAULT value];
SET var = value; Assignment statement var := value;

Condition Handlers

Teradata Description Avalanche

DECLARE EXIT HANDLER FOR SQLEXCEPTION @ SQL exception handler EXCEPTION WHEN OTHERS

DECLARE CONTINUE HANDLER FOR SQLSTATE

i i Unique key violation = EXCEPTION WHEN DUP_VAL_ON_INDEX
VALUE '23505

22 Avalanche Migration Guide (Teradata to Avalanche)

Appendix 1- Mapping SQL

Cursor Declarations and Operations

Teradata

Description

Avalanche

DECLARE cur CURSOR FOR SELECT

DECLARE cur CURSOR
FOR stmt_1id,;

DECLARE cur CURSOR WITH RETURN

PREPARE stmt_id FROM sql_str;

OPEN cur;

OPEN cur [USING var, ..];

FETCH cur INTO var, ..;

CLOSE cur;

Cursor declaration

Cursor for prepared
statement

Result set

Prepare
dynamic SQL statement

Open a cursor

Open cursor for prepared
statement

Fetch a cursor

Close a cursor

CURSOR cur IS SELECT ..

cur SYS_REFCURSOR;

cur OUT SYS_REFCURSOR

Linked with OPEN cur FOR sql_str;

OPEN cur;

OPEN cur FOR sql_str [USING var,
.15

FETCH cur INTO var, ..;

CLOSE cur;

Avalanche Migration Guide (Teradata to Avalanche)

23

Appendix 1- Mapping SQL

Executing Dynamic SQL Statements

Teradata Description Avalanche
. Prepare Linked with EXECUTE

PREPARE stmt_1id FROM sql_str; .

- - dynamic SQL statement IMMEDIATE sql_str;

E t d EXECUTE IMMEDIATE L_st USING

EXECUTE stmt_id [USING var, ..]; xecute prepare sqt_str [var,

- dynamic SQL .15
EXECUTE IMMEDIATE sql_str; Execute dynamic SQL EXECUTE IMMEDIATE sql_str;

Flow-of-Control Statements

Teradata Description Avalanche

FOR var AS SELECT .. DO stmts END FOR;

FOR var IN (SELECT ..) LOOP stmts
FOR var AS cur CURSOR FOR SELECT .. For each row loop | LOOP;
DO stmts END FOR;

IF condition THEN .. END IF; IF statement IF condition THEN .. END IF;

Leave a loop or

LEAVE Llabel; EXIT Llabel;

block
Leave the
LEAVE outer_proc_label; v RETURN;
- - procedure
LOOP stmts END LOOP; LOOP stmts END LOOP;
A loop statement
Label: LOOP stmts END LOOP Label; <<label>> LOOP stmts END LOOP Label;
REPEAT stmts UNTIL condition END LOOP stmts EXIT WHEN condition; END
REPEAT; Conditional loop LOOP;
WHILE condition DO stmts END WHILE; WHILE condition LOOP stmts END LOOP;

Other Statements and Procedural Language Elements

Teradata Description Avalanche
CALL proc(param, ..) Call a procedure proc(param, ..)
label: Label declaration <<label>>

24 Avalanche Migration Guide (Teradata to Avalanche)

Appendix 1- Mapping SQL

Other SQL Statements

Converting other SQL statements from Teradata to Avalanche:
Teradata Description Avalanche
HELP STATISTICS table_name Show number of unique values for columns Commented

INS | INSERT INTO table name Insert a row INSERT INTO table_name

Error Codes and Messages

Mapping error codes and messages from Teradata to Avalanche:
Teradata Description Avalanche

cur%NOTFOUND for FETCH statement

SOLSTATE = '02000" Row not found SQL%NOTFOUND for UPDATE, DELETE statements

SQLCODE = 100 in an exeption handler for
SELECT INTO

Avalanche Migration Guide (Teradata to Avalanche)

25

Appendix 2 - Detailed Data Type Mapping

Appendix 2 - Detailed Data Type Mapping

The following tables map the various Teradata Special data types to Avalanche

Numeric Data Types

P ANSI | TDAT
Teradata Data Type Description Vector Data Type soL Ext
BIGINT 64-bit integer BIGINT X
BYTEINT 8-bit integer, -128 to 127 TINYINT X
Teradata has 2 different
"DATE" data types. DATE is
supported both in its
Teradata internal form, and
DATE" in the preferred ANSI INTEGER X X
DateTime form. You need to
ensure you know the
semantics used by the
application
DECIMAL(p, s), N
DEC(p, s) Fixed-point number DECIMAL(p, s) X
DOUBLE PRECISION Double precision floating- | r\ o7 on FLOATS (8-byte) X
point number
FLOAT is a Teradata synonym
FLOAT for REAL and DOUBLE FLOAT, or FLOAT8 (8-byte) X
PRECISION.
INTEGER, INT 32-bit integer INTEGER X
NUMBER 1is a Teradata
NUMBER extension to the ANSI X
SQL:2011 standard.
Number of n total digits
NUMBER(n,m) with m fractional digits. DECIMAL(p, s) X
Number with up to m
*
NUMBER(*,m) fractional digits. DECIMAL(p, s) X
NUMERIC(p, s) Fixed-point number DECIMAL(p, s) X
Double precision floating- FLOAT4 (4-byte), or FLOATS8
REAL . X
point number (8-byte)
SMALLINT 16-bit integer SMALLINT X
26 Avalanche Migration Guide (Teradata to Avalanche)

Appendix 2 - Detailed Data Type Mapping

Date/Time Data Types

Teradata Data s ANSI | TDAT
Type Description Avalanche Data Type sQL Ext
DATE with a DateForm of
DATE ANSIDate is ANSI SQL:2011 ANSIDATE X
compliant.
TIME [time_precision]
[time_zone_spec]
TIME [(n)] (WITH TIME ZONE, or WITH LOCAL X
TIME ZONE)
TIMESTAMP
TIMESTAMP [(n)] [(timestamp_precision)] X
[time_zone_spec]
Teradata Data Type Description Avalanche Data Type ANST | TDAT
SQL | Ext
Can be derived via a
combination of the [INTERVAL
Identifies a field as an DAY TO SECOND] & [INTERVAL
INTERVAL DAY [(n)] INTERVAL value defining a YEAR TO MONTH] data types, and X
period of time in days. the TIMESTAMPADD(),
TIMESTAMPDIFF(), DATE_ADD(),
DATE_SUB() functions.
Can be derived via a
s . combination of the [INTERVAL
Identifies a field as an
INTERVAL DAY [(n)] INTERVAL value defining a DAY TO SECOND] & [INTERVAL
TO HOUR period of time in days and YEAR TO MONTH] data types, and X
hours the TIMESTAMPADD(),
: TIMESTAMPDIFF(), DATE_ADD(),
DATE_SUB() functions.
Can be derived via a
s es . combination of the [INTERVAL
Identifies a field as an
INTERVAL DAY [(n)] INTERVAL value defining a DAY TO SECOND] & [INTERVAL
TO MINUTE period of time in days YEAR TO MONTH] data types, and X
hours. and minutes ’ the TIMESTAMPADD(),
’ ' TIMESTAMPDIFF(), DATE_ADD(),
DATE_SUB() functions.
Identifies a field as an
INTERVAL DAY [(n)] | INTERVAL value defining a INTERVAL DAY TO SECOND
period of time in days, .. X
TO SECOND . [(second_precision)]
hours, minutes, and
seconds.
Avalanche Migration Guide (Teradata to Avalanche) 27

Appendix 2 - Detailed Data Type Mapping

Teradata Data Type Description Avalanche Data Type ANST | TDAT
SQL Ext
Can be derived via a
combination of the [INTERVAL
Identifies a field as an DAY TO SECOND] & [INTERVAL
%?:s?VAL HOUR INTERVAL value defining a YEAR TO MONTH] data types, and X
period of time in hours. the TIMESTAMPADD(),
TIMESTAMPDIFF(), DATE_ADD(),
DATE_SUB() functions.
Can be derived via a
. . combination of the [INTERVAL
Identifies a field as an
INTERVAL HOUR INTERVAL value defining a DAY TO SECOND] & [INTERVAL
[(n)] TO MINUTE period of time in hours and YEAR TO MONTH] data types, and X
minutes the TIMESTAMPADD(),
TIMESTAMPDIFF(), DATE_ADD(),
DATE_SUB() functions.
Can be derived via a
s . combination of the [INTERVAL
Identifies a field as an
INTERVAL HOUR INTERVAL value defining a DAY TO SECOND] & [INTERVAL
[(n)] TO SECOND period of time in hours YEAR TO MONTH] data types, and X
minutes, and seconds ’ the TIMESTAMPADD(),
’ TIMESTAMPDIFF(), DATE_ADD(),
DATE_SUB() functions.
Can be derived via a
combination of the [INTERVAL
Identifies a field as an DAY TO SECOND] & [INTERVAL
%?:g?VAL MINUTE INTERVAL value defining a YEAR TO MONTH] data types, and X
period of time in minutes the TIMESTAMPADD(),
TIMESTAMPDIFF(), DATE_ADD(),
DATE_SUB() functions.
Can be derived via a
s . combination of the [INTERVAL
INTERVAL MINUTE iﬂ';g;\l/:iejaiuzligiiina"a DAY TO SECOND] & [INTERVAL
[(n)] TO SECOND eriod of time in minu%es YEAR TO MONTH] data types, and X
[(m)] znd ceconds the TIMESTAMPADD(),
TIMESTAMPDIFF(), DATE_ADD(),
DATE_SUB() functions.
28 Avalanche Migration Guide (Teradata to Avalanche)

Appendix 2 - Detailed Data Type Mapping

Teradata Data Type Description Avalanche Data Type ANST | TDAT
SQL Ext
Can be derived via a
combination of the [INTERVAL
Identifies a field as an DAY TO SECOND] & [INTERVAL
INTERVAL MONTH INTERVAL value defining a YEAR TO MONTH] data types, and X
period of time in months the TIMESTAMPADD(),
TIMESTAMPDIFF(), DATE_ADD(),
DATE_SUB() functions.
Can be derived via a
combination of the [INTERVAL
Identifies a field as an DAY TO SECOND] & [INTERVAL
f?:E?x?;]SECOND INTERVAL value defining a YEAR TO MONTH] data types, and X
’ period of time in seconds the TIMESTAMPADD(),
TIMESTAMPDIFF(), DATE_ADD(),
DATE_SUB() functions.
Can be derived via a
combination of the [INTERVAL
Identifies a field as an DAY TO SECOND] & [INTERVAL
%?:g?VAL YEAR INTERVAL value defining a YEAR TO MONTH] data types, and X
period of time in years the TIMESTAMPADD(),
TIMESTAMPDIFF(), DATE_ADD(),
DATE_SUB() functions.
Identifies a field as an
INTERVAL YEAR INTERVAL value defining a
[(n)] TO MONTH period of time in years and INTERVAL YEAR TO MONTH X
months
Avalanche Migration Guide (Teradata to Avalanche) 29

Appendix 2 - Detailed Data Type Mapping

Character Data Types

Teradata Data s ANSI | TDAT
Type Description Avalanche Data Type soL Ext
Represents a fixed length
character string for
CHAR[(m)] Teradata Database internal CHARL(n)] X
character storage
CHARACTER is ANSI SQL:2011
CHARACTER(n) compliant. GRAPHIC is a CHAR(size) (Character-Sets are
CHARACTER SET R X
GRAPHIC Teradata extension to the not supported)
ANSI SQL:2011 standard
Represents a large
character string. A
character large object
(CLOB) column can store .
cLos character data, such as VARCHAR(size) X
simple text or HTML. Note:
A CLOB column can store XML
or JSON documents.
CHAR VARYING(n) VARCHAR(size) (Charactersets X
are not supported)
LONG VARCHAR VARCHAR(size) X
LONG VARCHAR .
CHARACTER SET Zﬁzc:gz(ztzegpéggiractersets X
GRAPHIC PP
Represents a variable
length character string of
VARCHAR(n) length @ to n for Teradata VARCHAR(size) X
Database internal character
storage
VARCHAR(n) .
CHARACTER SET Zﬁzc:gz(ztzegréggiracter Sets X
GRAPHIC PP
30 Avalanche Migration Guide (Teradata to Avalanche)

Appendix 2 - Detailed Data Type Mapping

Period Data Types

Teradata Data Type Description Avalanche Data Type I\SI\::LI TE[::::T
A data type that has two
DateTime elements .
PERIOD(DATE) associated with it; PERIOD is not supported X
BEGINNING & ENDING
PERIOD(TIME [(n)]) PERIOD is not supported X
PERIOD(TIMESTAMP .
PERIOD is not supported X
[(mD PP
Byte Data Types
Teradata Data Type Description Avalanche Data Type AS?LI TEDX':T
BLOB[(n)] BLOB is not supported X
BYTE[(n)] NCHAR(size) X
VARBYTE[(n)] NVARCHAR (size) X
UDT Data Types
Teradata Data Type Description Avalanche Data Type AS’ELI TEDX'::T
UND_NAME Not supported X
Avalanche Migration Guide (Teradata to Avalanche) 31

Appendix 3 - Glossary of Terms

Appendix 3 - Glossary of Terms

Different vendors have specific meanings for commonly used terms found in the Analytics
/ Database space. This section covers the meaning of terms we will use in this guide.

Database Instance: This is the set of executables used to manage one or more
‘databases.”

Database: This is a collection of tables, objects, indexes, views, stored-procedures, etc.
used to support a given application.

TiB: The TebiByte specifies a given number of bytes used for digital information. It is a
member of the set of units with binary prefixes defined by the International
Electrotechnical Commission (IEC). Its unit symbol is TiB. The prefix tebi (symbol Ti)
represents multiplication by 1024* therefore:

1 tebibyte = 2% bytes = 1,099,511,627,776bytes = 1024 gibibytes
1024 TiB

The tebibyte is closely related to the TeraByte (TB), which is defined as 107 bytes =
1,000,000,000,000 bytes. One tebibyte (1 TiB) is approximately equal to 1.1 TB. In
some contexts, the terabyte has been used as a synonym for tebibyte.

1 pebibyte (PiB)

32

Avalanche Migration Guide (Teradata to Avalanche)

	Introduction
	Plan Your Migration to Avalanche
	Create Your Migration Team
	High Level Migration Planning
	Enterprise Level Considerations
	Test and Certification

	Description of Existing Environment
	Identify Components to Migrate to Avalanche
	Description of Applications
	Description of Source Data (Teradata Systems)
	Identify Teradata Database Tables and Sizes
	Extracting DDL from Teradata Systems
	Teradata Database Objects NOT Needed in Avalanche

	Define the Avalanche System
	Define Platform Attributes
	Set Up Cloud Storage
	Define Avalanche Schema
	Define Users
	Data Distribution
	Constraints
	Define Tables

	Data Load Process
	Data Load Reference Architecture
	Load Data into Avalanche
	Staging Data in a Data Lake
	Load Data From the Data Lake

	Accessing Avalanche
	Connecting to Avalanche
	Connecting to Avalanche on AWS

	Appendix 1 – Mapping SQL
	Core Data Types
	SQL Language Elements
	Converting SQL Language Elements from Teradata to Avalanche
	Comparison Operators

	Built-in SQL Functions
	Converting Functions from Teradata to Avalanche:

	SELECT Statement
	Converting SQL Queries from Teradata to Avalanche:
	QUALIFY Clause Conversion:

	CREATE TABLE Statement
	Converting CREATE TABLE Statements from Teradata to Avalanche
	Column Options and Attributes
	Temporary Tables

	CREATE PROCEDURE Statement
	Converting Stored Procedures from Teradata To Avalanche

	Procedural SQL Statements
	Variable Declaration and Assignment
	Condition Handlers
	Cursor Declarations and Operations
	Executing Dynamic SQL Statements
	Flow-of-Control Statements
	Other Statements and Procedural Language Elements

	Other SQL Statements
	Converting other SQL statements from Teradata to Avalanche:

	Error Codes and Messages
	Mapping error codes and messages from Teradata to Avalanche:

	Appendix 2 – Detailed Data Type Mapping
	Numeric Data Types
	Date/Time Data Types
	Interval Data Types
	Character Data Types
	Period Data Types
	Byte Data Types
	UDT Data Types

	Appendix 3 – Glossary of Terms

