
As we embrace the cloud and the concept

of delivering a subscription-based solution

(PaaS/SaaS) to our customers, we are faced

with numerous challenges regarding our

ability to bring these solutions to market.

In most cases, software development projects are allotted a considerable

amount of resources dedicated to Research and Development. The priorities are

usually the same: The need to develop a new product, with great features, top

performance, reliability, security, affordability, competitiveness, and all within

the context of a compelling use-case, which is meant to attract more customers

and ultimately impact our bottom-line. All of this is clear. To deliver a successful

SaaS offering, however, – which in-turn results in a continuous revenue stream

from satisfied customers, – we must pay close attention to how we will build and

support such a platform in a sustainable way.

A few questions arise: How will we release new features and deliver patches? How

do we respond to unexpected outages? How can we provide a resilient bridge

between our developers and the operators who will be responsible for running

the show? What are our available resources, both from a head-count and budget

perspective? The answers reside in having a strong DevOps practice and culture,

and choosing the right tools for the task at hand.

By: Oliver Fasterling,

Principal DevOps Engineer, Actian

Need More information?

Visit www.actian.com for product,

service, and solution information,

papers, success stories and much

more.

Choosing the Right DevOps Tools
to Master Multi-Cloud

White Paper

https://www.actian.com/

Back in the day, we hosted everything “on-premise.” We purchased hardware, installed it, configured it and relied on the

IT department to keep the machines up and running. Times are evolving and we are now faced with the undeniable fact

that on-premise solutions are becoming less and less attractive to our customers. Instead, they favor cloud-based solutions,

to which they can have immediate access and without having to worry about hardware upkeep. Now, it’s important to

recognize on-premise solutions will not disappear entirely. There are still customers who won’t fully embrace the cloud, for

a variety of reasons. Overall, however, on-premise solutions have become products for a niche market. This article will focus

on the trend regarding cloud adoption and development of cloud-based solutions.

We have a consensus that embracing the cloud is the future. That in itself presents new questions, however, and ultimately

a variety of challenges to consider:

 ■ Which cloud platform should we pick?

 • AWS?

 • Azure?

 • GCP?

 • Others?

 ■ Which compute/virtualization platform should we use?

 • Standalone virtual instances, e.g., EC2, Azure VMs

 • VMWare on cloud

 • Containers, e.g., Docker/Kubernetes

 • Serverless/FaaS (Functions-as-a-Service),

e.g., AWS Lambda, Azure Functions

 ■ Which cloud computing service (XaaS) should we

use? What are the differences between them?

 • IaaS (Infrastructure-as-a-Service)

 • PaaS (Platform-as-a-Service)

 • SaaS (Software-as-a-Service)

 ■ What is our Continuous Integration and

Continuous Delivery (CI/CD) strategy?

 • How often will we build and release new

patches and major features?

• Weekly, monthly or Agile (Sprint-

based release schedule)?

 • Which tools should we use for integration?

Which tools for delivery? An all-inclusive

tool that combines everything?

 • How will we provision our infrastructure

in a sustainable way?

• CloudFormation templates/Azure Resource Manager

• Terraform/Ansible/Chef/PowerShell

 • Which type of third-party applications

are we allowed to consume?

• Free/Open source/community-based support

• Closed source/paid support

From a holistic viewpoint, any XaaS offering must consider all of the above items – clearly a non-inclusive list – to be

successful. To help answering some of the questions above, we must leverage the right DevOps tools for the right task.

First, however, we must understand the meaning of DevOps, an often-misrepresented term within the corporate culture.

What is DevOps?

Among the various definitions of “DevOps,” the one which I consider to

be the most accurate is:

“DevOps is the practice of operations and development

engineers participating together in the entire service

lifecycle, from design through the development process

to production support.”
Ernest Mueller, rev. 12 Jan 2019,

https://theagileadmin.com/what-is-devops/

The definition is simple and to the point. It brings

people together from two distinct disciplines,

development and operations, into one common

practice.

A more thorough definition of DevOps is one which incorporates the 8 practices of SDLC (Software Delivery Life Cycle) in a

continuous, infinite loop (a.k.a. “Moebius Loop”):

1) Planning, 2) Coding, 3) Building, 4) Testing, 5) Releasing, 6) Deploying, 7) Operating and 8) Monitoring

Source: https://cdn-images-1.medium.com/max/2600/1*EBXc9eJ1YRFLtkNI_djaAw.png

Throughout my journey in the DevOps space, I have often seen a misunderstood application of DevOps practices within

the corporate structure. Many software projects are allotted a team of “developers” on one side and “operators” on the other.

These teams are often part of two separate reporting structures, which makes the division even more noticeable.

This is a major hindrance to an effective software development strategy and an exact contradiction of the DevOps

philosophy. The true DevOps discipline was created from the notion that two distinct teams couldn’t work well together

because of the inherent discrepancies that existed in skills and responsibilities. Indeed, DevOps is a hybrid solution, which

incorporates a healthy mix of both “developer” and “operator” mindsets, with the purpose of bringing teams together with

the ultimate goal of delivering software with greater speed and quality.

A DevOps resource should be part of a common corporate reporting structure, which includes both development and

operations. In summary, DevOps resources must be present throughout the entire software development life cycle,

interchanging roles as developers, architects, testers and operators, and ready to wear multiple hats at any given time.

Corporate leadership must grasp this basic concept to allocate resources effectively.

https://theagileadmin.com/what-is-devops/
https://cdn-images-1.medium.com/max/2600/1*EBXc9eJ1YRFLtkNI_djaAw.png

Separation of Duties

While it is important to recognize the need for a streamlined and unified DevOps practice, we also cannot ignore the risks

associated with access to customer data and a lack of a proper change management process. Letting one person (or a

team of people) have too much access to the available resources is unacceptable, and clearly a poor implementation of

the proper checks and balances that are required to be compliant with external regulatory bodies. Having proper strategy

involving “Separation of Duties” (SoD) is essential to provide our customers with an enterprise-grade and secure solution.

The challenge, however, is not having

a DevOps team and SoD policy in

place, but how to make both concepts

work together in a seamless fashion.

The article reference on the right

provides an honest approach about

how to overcome this challenge.

One size does not fit all

There is a novel idea regarding the ability to design an entire solution stack, which can be portable and reusable with any

cloud provider. We refer to this as designing a solution with a “cloud-agnostic” mindset. The idea seems great, but it is

actually not possible to be truly agnostic. If we pick a particular cloud provider, then we are inherently forced to use that

provider’s service ecosystem.

Yes, we can containerize our application, which can give us a significant amount of freedom and portability. However,

putting the different pieces together (compute, network, storage, logging, security, etc.), requires the solution to use specific

services only available from the current provider. If we have a directive to build our product on a specific provider, then it

will be undoubtedly a custom-solution for that provider. In addition, if we need to replicate that effort on a second or third

provider, then we’ll take as much of the portability as we can, – such as containerized applications –, but the rest will require

to be re-done to match that new provider.

Conversely, it’s just as important not to fall into the trap of using every service that is made available from a particular provider.

A great example is Amazon ECS vs. Kubernetes, where both offer containerization orchestration, but as evidence has shown,

Kubernetes is revealed as being a superior choice due to its portability and ease-of-use across different cloud platforms.

“DevOps and Segregation of Duties”

by Jeehad Jebeile, 19 Nov 2018

https://medium.com/@jeehad.jebeile/devops-and-segregation-of-duties-9c1a1bea022e

The article describes that certain industries, such as Finance or Healthcare,

– which are highly regulated, – require a strict implementation of SoD. It is

possible, however, to achieve compliance without creating a major impact to

an integrated DevOps practice.

https://medium.com/@jeehad.jebeile/devops-and-segregation-of-duties-9c1a1bea022e

Containerization vs. PaaS vs. FaaS

The concept of creating reusable containers, such as Docker, is undoubtedly one of the most important elements when

designing a cloud solution. Containers are without a question a “must-have” in our architecture. Containers create portability

and portability is good. We must understand, however, there are limitations with containers. Containers are great for

bundling an application, which can be difficult to assemble in more than one platform. We cannot, however, containerize

everything. Storage must be separate and isolated. Networking cannot be fully containerized, as we have other services

that exist outside of the container infrastructure. Also, we often have the need to leverage separate PaaS and FaaS services

for minor workloads, such as databases (RDS/SQL Azure) and serverless (AWS Lambda/Azure Functions), where it would be

counterproductive to create our own container for such small tasks.

In summary, for closed-source applications, such as our own portfolio of Actian databases, containerization makes perfect

sense. Clearly, however, not everything else may apply. We should not dismiss the use of readily available PaaS offerings

because we fear the notion of becoming “vendor-locked.” Often, the pursuit of containerizing everything for the sake of

portability in a multi-cloud stance is counterproductive and overkill, and likely requires a significant amount of time and

energy before such portability can be achieved, if it can be achieved at all.

Developing custom CI/CD tools

The concept of developing a “cloud-

agnostic” solution is also challenging

when we deal with our continuous

integration and continuous delivery

strategy. Very often, our build and

deployment tools make use of specific

API calls, which will only work for a

specific cloud provider. Some of these

tools may only have plugins for one

cloud provider, but not for another.

In such cases, we are forced to use a

specific toolset for a specific provider.

In addition, how can we achieve a true

cloud-agnostic, multi-cloud CI/CD

strategy? This is a very good question

and with no easy answers. There are

third-party solutions available that

advertise all-inclusive, multi-cloud, CI/

CD capabilities. They are either too

difficult to use with limited support (open

source), or prohibitively expensive and

becomes a non-starter. Alas, the research

for the “right” solution may involve a

combination of readily available apps

and plugins (e.g., Jenkins), while also the

employment of custom-made scripts,

which are specifically customized for the

cloud platform in question.

www.actian.com | Toll Free +1 888 446 4737 | Tel +1 650 587 5500

2300 Geng Rd., Suite 150, Palo Alto, CA 94303

© 2019 Actian Corporation. Actian is a trademark of Actian Corporation and its subsidiaries. All other trademarks, trade names, service

marks, and logos referenced herein belong to their respective companies. (DS23-1016)

Open-Source/Cloud-Source tools

There is always a debate about whether we should use open-source tools because of their perceived “free” value. This

perception is very short-sighted. Yes, they are free to use and, in most cases, the accompanying licensing is a non-issue.

In many cases, however, it costs a considerable amount of time and effort to utilize an open-source solution that works

effectively. The learning curve is often steep, and we have very limited human resources (DevOps engineers) available at our

disposal. In our DevOps practice, moreover, we are faced with a never-ending backlog of tasks and automation features we

hope to produce. Yes, we strive to leverage open-source tools to the best of our ability.

Surely, we will grab those tools the DevOps community have proven to be clear leaders. There are instances, however,

when the ROI generated from developing custom tooling with open-source technology becomes drastically diminished,

to the point where it may often result in a complete wasted effort. In such instances, we must be open-minded and realize

it is OK to pay a monthly fee to a third-party provider if it means we can bring our solution to market at a fraction of the

time compared to having it developed in-house. Sometimes, we must accept we cannot do everything ourselves. There

are expert players available who have already conquered many of the obstacles we are facing. Why not leverage that

knowledge and put our resources to use on more pressing matters?

Conclusion

If we are to deliver an enterprise-

grade solution to our customers,

then we must take a step back and

consider how all of the moving parts

fit together. We must come to terms

with the right definition of DevOps,

and consequently create a robust

and unified DevOps practice, while

keeping the right checks and balances

with an effective SoD strategy.

Yes, let’s leverage containerization

and reusable technology where

appropriate. Let’s not attempt to

design a single big black box, however,

that can be plugged and expected to

run everywhere, as it will never work.

Let’s use readily available services,

such as PaaS and FaaS, which can

be immediately consumed and have

negligible cost, even if they are specific

to a given cloud provider. Yes, let’s

leverage popular open-source tools

that match our particular needs. Let’s

also come to terms with our limited

human resource count and our ability

to produce results in a timely fashion.

We may often need help from a third-

party that can resolve a major hurdle

in our development process and free

valuable resources, so they can be

spent on more important matters.

https://www.youtube.com/user/ActianCorporation
https://twitter.com/ActianCorp
https://www.facebook.com/actiancorp
https://www.linkedin.com/company/actian-corporation
http://www.actian.com

