
Cloud Analytics
Database Performance

Report

Actian Vector up to 100x faster
than Apache Impala
MCG Global Services Benchmark Results

 ■ Independent benchmark performed by MCG Global Services

 ■ Test based on Berkeley AMPlab Big Data benchmark workload

 ■ Tested on a 16-node AWS cluster at 1, 5 and 10 TB database sizes

 ■ 10 TB database includes a 58 Billion row table used in join

 ■ Performance advantages were most pronounced on full table scan

queries that measure raw throughput

 ■ Apache Impala could not complete aggregation and join queries with

20 simulated users when the database size was scaled to 5 and 10 TB.

These queries were abandoned after taking more than 2 hours.

Key insights

Check out Actian Vector’s performance advantage today!

Activate for free in the AWS or Azure cloud or download

our FREE community edition at www.actian.com/vce

Vector Average Performance Improvement Over
Impala - Single User

Overall Aggregations Joins

120 x

100 x

80 x

60 x

40 x

20 x

0 x

T
im

e
s

F
a

st
e

r

1TB

110 x

41 x

57 x

5TB

10TB

Cloud Database Performance Benchmark
Product Profile and Evaluation:
Actian Vector and Apache Impala on Cloudera CDH

By McKnight Consulting Group Global Services
April 2018

Sponsored by

MCG Global Services Cloud Database Benchmark

© MCG Global Services 2018 http://www.mcknightcg.com Page 2

Executive Overview

Data-driven organizations rely on analytic databases to load, store, and analyze volumes of data at
high speed to derive timely insights. Data volumes within modern organizations’ information
ecosystems are rapidly expanding—placing significant performance demands on legacy
architectures. Today, to fully harness their data to gain competitive advantage, businesses need
modern scalable architectures and high levels of performance and reliability to provide timely
analytical insights.

To address this need, we conducted this benchmark study, which focuses on the performance of
cloud-enabled, enterprise-ready, analytical-workload solutions on Actian Vector and Apache Impala
supported by Cloudera Enterprise. The benchmark is designed to simulate a set of real-world
scenarios to answer fundamental business questions that an organization from nearly any industry
sector might ask.

The benchmark tested the scalability of corporate-
complex workloads. The tests were based on the
industry standard UC Berkeley AMPLab Big Data
Benchmark with the dataset sizes being extended to 1,
5, and 10 TB of data to simulate real-world Big Data
demands. The testing was conducted using clusters on
Amazon Web Services (AWS) that were equivalent in
cluster node counts and comparable in cost per hour
to run.

Measuring execution performance of queries with
increasing data volumes and concurrency, benchmark
results for Actian Vector and Impala revealed some
significant performance differentiators between the
two products. Actian Vector performed up to 60 times
faster overall, over 100 times faster on queries with
joins, and up to 41 times faster on queries with
aggregations on single-user tests.

A revealing finding emerged when we stressed the
workload by simulating 20 concurrent users. On
simple scan queries, Impala ran 165 times slower
when 20 users ran the same query simultaneously—
while Vector experienced only a 2x slow down as
compared to a single user query. Also, Impala
completed only 68% of the benchmark tests while
Actian Vector was able to complete all portions of the benchmark suite.

MCG Global Services Cloud Database Benchmark

© MCG Global Services 2018 http://www.mcknightcg.com Page 3

Big Data Analytics Platform Offerings

Big Data analytics platforms load, store, and analyze volumes of data at high speed, providing timely
insights to businesses. This data is structured, semi-structured, or unstructured from a variety of
sources such as machine, sensor, log, sentiment, clickstream, and geospatial data. Data-driven
enterprises leverage data for many use cases including performing clickstream analysis to market
new promotions, operational analytics to drive efficiency, and predictive analytics to evaluate credit
risk and detect fraud. Often organizations leverage a mix of relational analytical databases and data
warehouses, Apache Hadoop, and NoSQL databases to gain desired analytic insights to optimize
their business performance.

This paper focuses on cloud-enabled relational analytical databases since cloud deployments are at
an all-time high and poised to expand dramatically. The cloud offers opportunities to differentiate
and innovate with these database systems more rapidly than ever before possible. Many companies
are leveraging the cloud for portions of their information ecosystem and creating hybrid
architectures of cloud and on-premises assets. Further, the cloud has been a disruptive technology,
as cloud storage tends to cost less, enables rapid server deployment, and offers elastic scalability as
compared with on-premise deployments. For these reasons many data-driven companies are
increasingly migrating to the cloud.

This paper compares two popular cloud-based analytical databases: Actian Vector and Apache
Impala. Both relational analytical databases are based on massively parallel processing (MPP) that
scale and provide high-speed analytics. Impala is available as a component of Cloudera CDH
(Cloudera Distribution including Apache Hadoop) commercial stack and can be used for free as
Cloudera Express. Actian Vector is available for developers as a free, downloadable on-premise
community edition. The community edition is also available in the cloud at the AWS and Azure
marketplaces for single-click deployment.

 AAccttiiaann VVeeccttoorr IImmppaallaa
Company Actian Cloudera
Released 2014 2013
Current Version 5.0 5.14
Storage Hadoop HDFS Hadoop HDFS
SQL ANSI SQL 2003 Impala SQL
Massive Parallel
Processing (MPP) ü ü

Columnar ü
AWS Cloud ü ü
Azure Cloud ü ü
On-premise ü ü

MCG Global Services Cloud Database Benchmark

© MCG Global Services 2018 http://www.mcknightcg.com Page 4

Benchmark Setup

The benchmark was executed using the following setup, environment, standards, and
configurations.

DDaattaa PPrreeppaarraattiioonn
The data sets used in the benchmark were an extension of the original UC Berkeley AMPLab BDB
data set.

To assess the performance of these two platforms at real-world scale, the original Berkeley BDB
data sets were extended in size. For these tests, new data was generated. To be consistent with the
same generation methods of the Berkeley BDB, the same Intel Hadoop Benchmark tools were used.

The data preparation scripts were modfied from the original, published by the AMPLab, to generate
the data using a generic Amazon Linux instance on AWS and store the extended BDB data set on S3.
(The original Berkeley BDB data preparation scripts use a Hadoop instance to generate the data,
which was not part of this benchmark.) The script simply replicated the same data generation
method as the AMPLAb scripts. The part files were then uploaded to an S3 bucket.

The extended BDB data set has the identical schema as the original Berkeley BDB data set, which
consists of two tables—rankings and uservisits.1

The schema of these two tables are detailed below. Additionally, the extended data sets were scaled
up to 10TB. A table describing the sizes of these data sets appears below as well.

Rankings UserVisits
pageURL varchar(300)*

pageRank int
avgDuration int

sourceIP varchar(116)
destURL varchar(100)*

visitdate date
adrevenue float

useragent varchar(256)
countrycode char(3)

languagecode char(6)
searchword varchar(32)

duration int
*The tables can be joined on Rankings pageURL and UserVisits destURL.

1 The pre-existing Big Data Benchmark (BDB) that we modeled our datasets after was provided by the UC Berkeley
AMPLab. The data was sourced from the BDB S3 bucket made publicly available at s3n://big-data-benchmark/pavlo/.
For more about the AMPLab BDB Data Set, see https://amplab.cs.berkeley.edu/benchmark/. The documents set of
unstructured data in the original Berkeley BDB was not replicated or used in this benchmark, since we were not testing
the unstructured use case.

MCG Global Services Cloud Database Benchmark

© MCG Global Services 2018 http://www.mcknightcg.com Page 5

Data Set Rankings UserVisits
Name Row Count Bytes Row Count Bytes Total
MCG 1TB 0.3 billion 0.02TB 5.8 billion 0.98TB 1TB
MCG 5TB 1.2 billion 0.10TB 29 billion 4.90TB 5TB
MCG 10TB 2.5 billion 0.50TB 58 billion 9.50TB 10TB

Like the original Berkeley BDB data set, the files are segmented into parts. For the 1TB data set, the
rankings and uservisits data are segmented into 6,000 parts each, bringing the total to 12,000 files
per TB. Each part of the uservisits data sets contain 982,000 rows per part. The uservisits data is a
detailed log of website clickstream activity, and the rankings table is a summary of the user visit
activity. Since the rankings data is created in tandem with the uservisits data—such that the two
tables can be joined on the pageURL fields—rankings has on average 1 row for every 24 rows of
uservisits data. The serial number of the part files was padded to 6 digits (e.g., part-000023) to allow
for the large number of part files.

The major difference between our generated data sets and the original Berkeley BDB data sets
(other than volume) was that our sets were generated in natural date order, whereas the BDB
records appear to be generated using a random date order. The rationale of conducting the
benchmark tests employing natural date order was that this would be closer to a real world use
case, as a clickstream web log database would typically be loaded in natural date order.

These files were generated and uploaded to an S3 bucket on AWS in the same region as the cluster
environments.

CClluusstteerr EEnnvviirroonnmmeennttss
Our benchmark included two cluster environments—one for Actian Vector and the other for
Impala—using Amazon EC2. With EC2 instances, system administrators have a variety of processor,
memory, and storage configuration options. It is up to the administrator to select the configuration
best suited for their organization’s requirements.

Both Impala and Vector can run on any of the EC2 instance classes. Thus, we used identical EC2
instance types (for equal processor and memory capacity) and the exact same storage
congfiguration to create an “apples-to-apples” comparison.

In this benchmark, several selection criteria needed to be compared when evaluating and selecting
hardware configurations: number of cluster nodes, processing power (number of and type of CPU
cores), memory, storage, and disk I/O. The following is an explanation of each factor:

MCG Global Services Cloud Database Benchmark

© MCG Global Services 2018 http://www.mcknightcg.com Page 6

• Number of cluster nodes – According to Cloudera’s sizing guide, they recommend roughly
between 15 and 20 nodes2 for our data size and concurrent user requirements. Vector
recommends at least 3 nodes, so we chose 16 nodes for our clusters.

• Processing power – We chose the EC2 r4 family to use for its High Frequency Intel Xeon E5-
2686 v4 (Broadwell) processors—good for general use and typical among many of the EC2
instance classes.

• Memory – We also chose EC2 r4 for its DDR4 memory—common among most of EC2 the
instance types.

• Storage and disk I/O – Since mathematically the benchmark queries “fit in memory” and the
select count(*) from method of result set handling (see the next section) reduces disk I/O to
a minimum, we used 1TB of Elastic Band Storage that comes with the EC2 r4 family.

In summary, the following table compares all factors considered.

Platform Actian Vector Impala
Version 5.0 (with the latest patch 53001

applied)
CDH 5.14

Instance Class r4.8xlarge (dedicated, no shared
tenancy)

r4.8xlarge (dedicated, no shared
tenancy)

Nodes 16 16
Cluster vCPUs 512 (32 per node) 512 (32 per node)
Cluster RAM 3,904 GiB (244 GiB per node) 3,904 GiB (244 GiB per node)
Storage 16TB EBS (1TB per node) 16TB EBS (1TB per node)
Computing Cost $34.05 per hour ($2.128 per node) $34.05 per hour ($2.128 per node)

The database management systems were each deployed on extra-large AWS 16 compute node
clusters configured to run the benchmark queries using the MCG 1TB, 5TB, and 10TB data sets. Only
16 nodes in each of the clusters were used for processing. For Vector, a 17th node was the Hadoop
namenode, which was smaller than the other nodes on which Vector was installed.

The Vector cluster instances were created in the same AWS Region, Northern Virginia (us-east-1),
and put in the same placement group for maximum network performance between the cluster
nodes. We also used the default security groups recommended by the product vendors.

DDaattaa LLooaadd RRoouuttiinneess
The data was loaded into each cluster environment using different methods. For Impala, the best
way was to create an external table using the S3 data:

2 Referencing the cluster size estimation table at the above hyperlink, we used Cloudera’s recommendations of 1TB with
100 users (15 nodes) and 15TB with 10 users (20 nodes) to arrive at this node count for our benchmark.

MCG Global Services Cloud Database Benchmark

© MCG Global Services 2018 http://www.mcknightcg.com Page 7

CCRREEAATTEE EEXXTTEERRNNAALL TTAABBLLEE ss33rraannkkiinnggss ((ppaaggeeUURRLL vvaarrcchhaarr((330000)),, ppaaggeeRRaannkk iinntt,,
aavvggDDuurraattiioonn iinntt))
RROOWW FFOORRMMAATT DDEELLIIMMIITTEEDD FFIIEELLDDSS TTEERRMMIINNAATTEEDD BBYY '',,''
LLOOCCAATTIIOONN ''ss33aa::////mmccgg--aaccttiiaann--bbeenncchhmmaarrkk//11TTBB//rraannkkiinnggss//'';;

Then we inserted the data from the external tables into physical tables on Impala:
iinnsseerrtt iinnttoo rraannkkiinnggss sseelleecctt ppaaggeeUURRLL,, ppaaggeeRRaannkk,, aavvggDDuurraattiioonn ffrroomm ss33rraannkkiinnggss;;

Once the data was loaded, in Impala, we generated statistics for the data using the following SQL
command, which is consistent with the product documentation:

ccoommppuuttee ssttaattss %%tt;;

where %t is the name of the table.

With Actian Vector, we leveraged a third-party package called s3fs-fuse to mount the S3 bucket
containing the benchmark data as a readable device directly on the Vector node leader. Then the
contents of the data folder were loaded using the vwload utility3 from the Linux command line:

vvwwllooaadd ----vveerrbboossee ----ffddeelliimm "",,"" ----ttaabbllee uusseerrvviissiittss mmccgg //ss33mmccgg//11TTBB//uusseerrvviissiittss//**

Once the data was loaded, in Vector, we generated statistics for the data using the following SQL
command,4 which is consistent with the product documentation.

ccrreeaattee ssttaattiissttiiccss ffoorr aallll ttaabblleess\\gg

In Vector, the data was loaded in 256 partitions, according to the following Actian-specified best
practices formula:

The number of CPU cores / 2
Also, 256 is divisible by the number of cluster nodes (16), so we knew the partition count was
acceptable.

For Impala, partitioning is used only when certain criteria are met. According to Cloudera
documentation, Impala data should be partitioned when the following conditions are true:

• Tables are very large (TRUE for our benchmark)
• Tables are often/always queried with conditions on certain columns (TRUE)
• Columns have reasonable cardinality (FALSE, because pageURL and destinationURL have

over 250 million unique values at 1TB)
• Data are loaded from an ETL pipeline (NOT APPLICABLE)

Thus, we did not partition the Impala data due to the high cardinality of the URL data.5

Load times were not part of this benchmark because of the inability to create load processes that
were comparable with all other factors set equal. We found both times, with the methods chosen,
to be within the bounds of acceptability for an enterprise.

3 The Actian Vector family of databases have several methods of loading external data, including a SQL COPY command.
But vwload was used so that data could be loaded uninterrupted and unattended from the Linux command line using
nohup.
4 SQL statements in the Ingres/Vector family of databases are terminated with \g.
5 We attempted to load the data into Impala with partitions anyway, and the load operations failed on Impala.

MCG Global Services Cloud Database Benchmark

© MCG Global Services 2018 http://www.mcknightcg.com Page 8

UUssee CCaasseess ((QQuueerryy SSeettss))
We sought to replicate the UC Berkeley AMPLab Big Data Benchmark queries in larger scale data
volumes with a few exceptions.

First, we deviated from the original BDB methodology that had each query’s results written to a
table using a platform-dependent variant of CREATE TABLE AS SELECT (CTAS). We wanted I/O to
impact the benchmark results as little as possible.

We decided to change from CTAS to SELECT COUNT(*) FROM as a method of handling the large
result sets because we wanted to use the most efficient means for handling the result set. Thus,
Query Sets 1 and 2 (see below) were encapsulated with the following:

SSEELLEECCTT CCOOUUNNTT((**)) FFRROOMM ((%%qq));;

where %q was the query itself.

BBDDBB UUssee CCaassee 11:: SSccaann QQuueerryy SSeett
Query set 1 primarily tested the throughput with which each database can read and write table
data. Query set 1 had 3 variants:

Variant a BI Use Small result sets that could fit in memory and quickly be
displayed in a business intelligence tool (450 million rows
@ 10TB)

Variant b Intermediate Use Result set likely too large to fit in memory of a single node
(1.3 billion rows @ 10TB)

Variant c ETL Use Result sets are very large as you might expect in a large
ETL load (2.0 billion rows @ 10TB)

Query set 1 contained exploratory SQL queries with potentially large result sets. The following table
shows how the query was scaled:

1a sseelleecctt ppaaggeeUURRLL,, ppaaggeeRRaannkk ffrroomm rraannkkiinnggss wwhheerree ppaaggeeRRaannkk >> 11000000

1b sseelleecctt ppaaggeeUURRLL,, ppaaggeeRRaannkk ffrroomm rraannkkiinnggss wwhheerree ppaaggeeRRaannkk >> 110000

1c sseelleecctt ppaaggeeUURRLL,, ppaaggeeRRaannkk ffrroomm rraannkkiinnggss wwhheerree ppaaggeeRRaannkk >> 1100

BBDDBB UUssee CCaassee 22:: SSuumm AAggggrreeggaattiioonn QQuueerryy SSeett
Query set 2 applied string parsing to each input tuple then performed a high-cardinality aggregation.
Query set 2 also had 3 variants:

Variant a Smaller number of aggregate groups (65,025)
Variant b Intermediate number of aggregate groups (1.6 million)
Variant c Larger number of aggregate groups (17 million)

MCG Global Services Cloud Database Benchmark

© MCG Global Services 2018 http://www.mcknightcg.com Page 9

The following table shows how the query was scaled:

2a sseelleecctt ssuubbssttrr((ssoouurrcceeIIPP,, 11,, 88)),, ssuumm((aaddRReevveennuuee)) ffrroomm uusseerrvviissiittss ggrroouupp bbyy
ssuubbssttrr((ssoouurrcceeIIPP,, 11,, 88))

2b sseelleecctt ssuubbssttrr((ssoouurrcceeIIPP,, 11,, 1100)),, ssuumm((aaddRReevveennuuee)) ffrroomm uusseerrvviissiittss ggrroouupp bbyy
ssuubbssttrr((ssoouurrcceeIIPP,, 11,, 1100))

2c sseelleecctt ssuubbssttrr((ssoouurrcceeIIPP,, 11,, 1122)),, ssuumm((aaddRReevveennuuee)) ffrroomm uusseerrvviissiittss ggrroouupp bbyy
ssuubbssttrr((ssoouurrcceeIIPP,, 11,, 1122))

BBDDBB UUssee CCaassee 33:: JJooiinn QQuueerryy SSeett
This query set joined a smaller table to a larger table then sorted the results. Query set 3 had a small
result set with varying sizes of joins. The query set had 3 variants:

Variant a Smaller JOIN within a date range of one month
Variant b Medium JOIN within a date range of one year
Variant c Larger JOIN within a date range of five years

The time scanning the table and performing comparisons became a less significant fraction of the
overall response time with the larger JOIN queries.

3a sseelleecctt ssoouurrcceeIIPP,, ssuumm((aaddRReevveennuuee)) aass ttoottaallRReevveennuuee,, aavvgg((ppaaggeeRRaannkk)) aass ppaaggeeRRaannkk
ffrroomm rraannkkiinnggss RR

jjooiinn ((sseelleecctt ssoouurrcceeIIPP,, ddeessttUURRLL,, aaddRReevveennuuee ffrroomm uusseerrvviissiittss UUVV wwhheerree
UUVV..vviissiittDDaattee >> ""11997700--0011--0011"" aanndd UUVV..vviissiittDDaattee << ""11997700--0022--0011"")) NNUUVV oonn ((RR..ppaaggeeUURRLL
== NNUUVV..ddeessttUURRLL))

ggrroouupp bbyy ssoouurrcceeIIPP oorrddeerr bbyy ttoottaallRReevveennuuee ddeesscc lliimmiitt 11;;

3b sseelleecctt ssoouurrcceeIIPP,, ssuumm((aaddRReevveennuuee)) aass ttoottaallRReevveennuuee,, aavvgg((ppaaggeeRRaannkk)) aass ppaaggeeRRaannkk
ffrroomm rraannkkiinnggss RR

jjooiinn ((sseelleecctt ssoouurrcceeIIPP,, ddeessttUURRLL,, aaddRReevveennuuee ffrroomm uusseerrvviissiittss UUVV wwhheerree
UUVV..vviissiittDDaattee >> ""11997700--0011--0011"" aanndd UUVV..vviissiittDDaattee << ""11997711--0011--0011"")) NNUUVV oonn ((RR..ppaaggeeUURRLL
== NNUUVV..ddeessttUURRLL))

ggrroouupp bbyy ssoouurrcceeIIPP oorrddeerr bbyy ttoottaallRReevveennuuee ddeesscc lliimmiitt 11;;

3c sseelleecctt ssoouurrcceeIIPP,, ssuumm((aaddRReevveennuuee)) aass ttoottaallRReevveennuuee,, aavvgg((ppaaggeeRRaannkk)) aass ppaaggeeRRaannkk
ffrroomm rraannkkiinnggss RR

jjooiinn ((sseelleecctt ssoouurrcceeIIPP,, ddeessttUURRLL,, aaddRReevveennuuee ffrroomm uusseerrvviissiittss UUVV wwhheerree
UUVV..vviissiittDDaattee >> ""11997700--0011--0011"" aanndd UUVV..vviissiittDDaattee << ""11997755--0011--0011"")) NNUUVV oonn ((RR..ppaaggeeUURRLL
== NNUUVV..ddeessttUURRLL))

ggrroouupp bbyy ssoouurrcceeIIPP oorrddeerr bbyy ttoottaallRReevveennuuee ddeesscc lliimmiitt 11;;

CCoonnccuurrrreennccyy TTeesstt HHaarrnneessss
The final objective of the benchmark was to demonstrate Vector and Impala performance at scale in
terms of concurrent users. There are many ways and possible scenarios to test concurrency. We
employed a use case where the identical query was executed at the exact same time by 20
concurrent users.

MCG Global Services Cloud Database Benchmark

© MCG Global Services 2018 http://www.mcknightcg.com Page 10

For these tests, we created a concurrency test harness written in Java using JDBC drivers. This
approach permitted the same query to be run in parallel and simulate multiple users accessing the
platform at the same time. The query driver had parameters that we passed to it to create multiple
threads and execute the benchmark queries in parallel.

For example, the following diagram demonstrates the query driver’s parallel execution of the 3a
query to simulate 20 concurrent users.

Thread 1 2 3 4 5 6 7 8 9 10
Query 3a 3a 3a 3a 3a 3a 3a 3a 3a 3a

Thread 11 12 13 14 15 16 17 18 19 20
Query 3a 3a 3a 3a 3a 3a 3a 3a 3a 3a

Although threads 1–20 were released simultaneously, the two platforms behaved very differently.

Impala has a feature known as admission control to impose limits on concurrent queries. The idea is
to avoid resource usage overruns and out-of-memory conditions on busy clusters. Admission control
acts by holding certain query requests in a queue until there are enough resources to run them. For
the purposes of our benchmark, we wanted to avoid admission control, because queued queries
would negatively skew the execution results and not demonstrate the true ability of the platform to
handle concurrency.

MCG Global Services Cloud Database Benchmark

© MCG Global Services 2018 http://www.mcknightcg.com Page 11

Benchmark Results

SSiinnggllee UUsseerr EExxttrraa LLaarrggee 1166--nnooddee CClluusstteerr RReessuullttss
The following tables display the individual query median and overall cumulative execution times (in
seconds) for the benchmark queries using the 16-node clusters.

11TTBB DDaattaa SSeett
In the case of the extended 1TB data set on a 16-node cluster, Vector query response times were all
faster than Impala. Overall, Vector was 27 times faster than Impala. However, the biggest gap
appeared during the Query 3 Join series. For Vector, Query 3a ran 50 times faster—followed by 3b
and 3c running 21 and 36 times faster, respectively. Below are the individual query results for the
1TB data set of Impala and Vector median query execution times out of 5 trials.

*This graph measures time to execute queries. A shorter bar indicates a faster response time.

MCG Global Services Cloud Database Benchmark

© MCG Global Services 2018 http://www.mcknightcg.com Page 12

55TTBB DDaattaa SSeett
In the case of 5TB (i.e., 29 billion rows in the uservisits table) on the same 16-node cluster, Vector
query response times were all faster than Impala. Overall, Vector was 44 times faster than Impala.
Again, the biggest gap was noticed during the Query 3 Join series. For Vector, Query 3a ran over 500
times faster. Below are the individual query results for the 5TB data set of Impala and Vector
median query execution times, again, out of 5 trials.

*This graph measures time to execute queries. A shorter bar indicates a faster response time.

MCG Global Services Cloud Database Benchmark

© MCG Global Services 2018 http://www.mcknightcg.com Page 13

1100TTBB DDaattaa SSeett
In the case of 10TB on the same 16-node cluster, Vector query response times were all faster than
Impala. On the whole, Vector was 37 times faster than Impala. Once again, the continued separation
is seen with the Query 2 Aggregation and Query 3 Join series. For Vector, queries 2a, 2b, and 2c
were 53, 42, and 33 times faster, respectively. Also for Vector, Query 3a was 500 times faster, and
Query 3b finished 66 times faster. Query 3c did not complete on Impala at 10TB.

*This graph measures time to execute queries. A shorter bar indicates a faster response time.

MCG Global Services Cloud Database Benchmark

© MCG Global Services 2018 http://www.mcknightcg.com Page 14

Overall, the cumulative execution times (with all median times added together) are presented in the
following graph:

*This graph shows query execution times added together.

A shorter bar indicates faster total response times across the workloads.

Across all data sizes and workloads for the single-user tests, Vector was over 39 times faster than
Impala.

CCoonnccuurrrreennccyy RReessuullttss

As previously noted, we conducted the benchmark tests using a driver to simulate concurrency of 20
users to see how both platforms would perform. Impala struggled with concurrency, and did not
complete many of the concurrency tests. We discuss the behavior we experienced after the results.

Vector was able to complete all tests at all data scale and concurrency levels.

The following tables display the median execution times (in seconds) over 5 runs of the benchmark
queries executed to simulate 20 concurrent users.

MCG Global Services Cloud Database Benchmark

© MCG Global Services 2018 http://www.mcknightcg.com Page 15

SSccaann QQuueerryy SSeett 11 wwiitthh 2200 CCoonnccuurrrreenntt UUsseerrss
In the case of the Scan Query
Series 1 on the 16-node clusters
with 20 users, Vector
concurrency response times
were all faster than Impala.

Vector completed all the
queries in less than a second.
Impala execution times became
exponentially longer with larger
data volumes.

NOTE: The 1TB and 5TB concurrency
tests were executed on Impala to
simulate 4 queries sent to 5 nodes
simultaneously (20 total) to take
scratch space pressure off a single
node. For the 10TB test, we utilized
the 16TB scratch drive for a 20
queries sent to 1 node test.

*This graph measures time to execute

queries. A shorter bar indicates a
faster response time.

MCG Global Services Cloud Database Benchmark

© MCG Global Services 2018 http://www.mcknightcg.com Page 16

JJooiinn QQuueerryy SSeett 33 wwiitthh 2200 CCoonnccuurrrreenntt UUsseerrss
In the case of Join queries, Vector query response times for 20 users were faster than Impala. For
Vector at 20 users, Queries 3a and 3b were over 700 and 300 times faster, respectively. Query 3c did
not complete on Impala at 1TB. Also, Impala did not complete any of Query Set 3 at 5TB or 10TB.
The following table shows Join Queries (Query Set 3) results using the 1TB data set:

*This graph measures time to execute queries. A shorter bar indicates a faster response time.

QQuueerriieess NNoott CCoommpplleettiinngg oonn IImmppaallaa
Many of the concurrent queries benchmark tests did not complete on Impala. None of the
Aggregation (Query Set 2) queries completed at any data size on Impala.

Observing the nature of these incomplete query runs revealed a confluence of issues. First, disk
spilling contributed to the underlying problem. For instance, the concurrent tests of aggregation
(Query Set 2) saw disk spilling as high as 65GB per query. With 20 concurrent queries running, the
total disk spillage was 1.3TB. This put enormous pressure on Impala.

Second, Impala uses temporary disk space during intensive query runs called scratch space.
According to Cloudera, the scratch space must not be part of the HDFS but rather the local
filesystem. Since the scratch space is not distributed throughout the cluster, the node to which we
sent the query would have the entire scratch directory. During concurrent query execution, the
scratch space would reach the capacity of the local file system, and the queries would fail.

MCG Global Services Cloud Database Benchmark

© MCG Global Services 2018 http://www.mcknightcg.com Page 17

We compensated for this by attaching a 16TB disk to the node receiving the query requests to use it
as scratch space. However, many of the concurrent queries would not complete within 2 hours,
which was our allowance.

The table below shows which queries would not complete on Impala due to query failure or the
execution time exceeding 2 hours. Impala completed 68% of the benchmark tests. All benchmark
tests completed on Vector.

1 User

20 Users

Data Size Query Vector Impala Vector Impala
1TB Query 1a 0.04 0.64 0.10 3.88
 Query 1b 0.04 0.64 0.11 2.94
 Query 1c 0.04 0.64 0.11 13.07
 Query 2a 7.58 86.22 12.88 Did Not Complete
 Query 2b 9.11 135.28 16.99 Did Not Complete
 Query 2c 12.01 381.61 20.22 Did Not Complete
 Query 3a 1.16 58.71 1.94 1,468.71
 Query 3b 9.77 207.39 14.56 4,553.28
 Query 3c 18.33 666.95 23.51 Did Not Complete
5TB Query 1a 0.07 2.05 0.15 26.15
 Query 1b 0.08 2.05 0.20 27.03
 Query 1c 0.07 1.95 0.19 28.67
 Query 2a 24.81 1,324.88 35.05 Did Not Complete
 Query 2b 30.85 1,229.76 49.42 Did Not Complete
 Query 2c 42.29 1,473.06 56.94 Did Not Complete
 Query 3a 3.38 1,335.95 4.77 Did Not Complete
 Query 3b 29.85 1,513.15 36.86 Did Not Complete
 Query 3c 76.98 2,265.95 84.90 Did Not Complete
10TB Query 1a 0.13 3.59 0.24 603.08
 Query 1b 0.17 3.67 0.34 602.16
 Query 1c 0.15 3.68 0.31 599.29
 Query 2a 38.86 2,055.06 59.16 Did Not Complete
 Query 2b 47.90 2,020.01 77.92 Did Not Complete
 Query 2c 72.99 2,437.77 120.59 Did Not Complete
 Query 3a 4.85 2,461.89 9.02 Did Not Complete
 Query 3b 44.67 2,966.18 75.61 Did Not Complete
 Query 3c 113.77 Did Not Complete 164.33 Did Not Complete

MCG Global Services Cloud Database Benchmark

© MCG Global Services 2018 http://www.mcknightcg.com Page 18

IImmppaallaa DDiisskk SSppiilllliinngg
The factor that contributed the most for the long execution times on Impala (and the failure of the
concurrency jobs to fully complete) were due to disk spilling that occurred—especially in the larger
data sets and more complex queries (sets2 and 3). For example, we saw Impala spill as much as
65GB to disk per query for the Aggregation queries (query set 2). The following chart details the disk
spilling we experienced on the Impala cluster.

*This graph reflects only Impala. Vector did not experience disk spilling on any of the benchmark tests.

Reviewing Cloudera’s documentation about disk spilling revealed the factors that caused Impala to
spill to disk. The following table lists Impala’s disk spilling triggers and identifies the queries that met
those conditions:

Impala may spill to disk when… Scan
(Query Set 1)

Aggregation
(Query Set 2)

Join
(Query Set 3)

A query uses a GROUP BY clause for
columns with millions of distinct values ü

Large tables are joined together ü
A large result set is sorted by the ORDER
BY clause ü

The DISTINCT and UNION operators build
in-memory structures for unique values

These are the most likely causes for the extensive disk spilling we experienced with Impala.

Vector experienced no disk spilling on any of the benchmark tests.

MCG Global Services Cloud Database Benchmark

© MCG Global Services 2018 http://www.mcknightcg.com Page 19

Conclusion

Cloud databases, notably on Amazon Web Services, are a way to avoid upfront large capital
expenditures, provision quickly, and provide performance for advanced analytic queries in the
enterprise. Relational databases with analytic capabilities continue to support the advanced analytic
workloads of the organization with performance, scale, and concurrency. In a representative set of
corporate-complex queries, Actian Vector significantly outperformed Impala when scale, and
especially joins, were introduced.

Measuring execution performance of queries
with increasing data volumes and
concurrency, benchmark results for Actian
Vector and Impala revealed some
performance differentiators between the two
products. Actian Vector performed up to 60
times faster overall, over 100 times faster on
queries with joins, and up to 41 times faster
on queries with aggregations on single user
tests.

A revealing finding was observed when we
stressed the workload by simulating 20
concurrent users. On simple scan queries,
Impala ran 165 times slower when 20 users
ran the same query simultaneously—while
Vector only experienced a 2x slow down.6
Additionally, Impala fully completed only 68%
of the benchmark tests.

These performance results are most likely
explained by the technology underlying
Vector. The basic architecture of Actian Vector
is the Actian patented X100 engine, which
utilizes a concept known as “vectorized query
execution,” where data processing is done in
chunks of cache-fitting vectors. Vector performs “single instruction, multiple data” processes by
leveraging the same operation on multiple data simultaneously and exploiting the parallelism
capabilities of modern hardware. It reduces overhead from conventional “one-row-at-a-time

6 In 2011, Vector set a new record in a TPC-H benchmark at scale factor 100, delivering 340% higher performance than
the previous best record while improving price/performance by 25%. Today Vector still leads in the 3,000GB category
according to the TPC.

MCG Global Services Cloud Database Benchmark

© MCG Global Services 2018 http://www.mcknightcg.com Page 20

processing” found in other platforms. Additionally, the compressed column-oriented format uses a
scan-optimized buffer manager.

Overall, Actian Vector on AWS or on-premises is an excellent choice for data-driven companies
needing high performance and a scalable analytical database in the cloud or to augment their
current, on-premises data warehouse with a hybrid architecture—at a reasonable cost.

For more information about Actian Vector including how to get a free download, go to
https://www.actian.com/analytic-database/vector-smp-analytic-database/.

MCG Global Services Cloud Database Benchmark

© MCG Global Services 2018 http://www.mcknightcg.com Page 21

About MCG Global Services

William McKnight is President of McKnight Consulting Group (MCG) Global Services
(http://www.mcknightcg.com). He is an internationally recognized authority in information
management. His consulting work has included many of the Global 2000 and numerous midmarket
companies. His teams have won several best practice competitions for their implementations and
many of his clients have gone public with their success stories. His strategies form the information
management plan for leading companies in various industries.

Jake Dolezal has two decades of experience in the Information Management field with expertise in
business intelligence, analytics, data warehousing, statistics, data modeling and integration, data
visualization, master data management, and data quality. Jake has experience across a broad array
of industries, including: healthcare, education, government, manufacturing, engineering, hospitality,
and gaming. He has a doctorate in information management from Syracuse University.

MCG services span strategy, implementation, and training for turning information into the asset it
needs to be for your organization. We strategize, design and deploy in the disciplines of Master Data
Management, Big Data Strategy, Data Warehousing, Analytic Databases, and Business Intelligence.

MCG Global Services Cloud Database Benchmark

© MCG Global Services 2018 http://www.mcknightcg.com Page 22

About Actian

Actian, the hybrid data management, analytics, and integration company, delivers data as a
competitive advantage to thousands of customers worldwide. Through the deployment of
innovative hybrid data technologies and solutions Actian ensures that business critical systems can
transact and integrate at their very best—on premise, in the cloud or both. Thousands of forward-
thinking organizations around the globe trust Actian to help them solve the toughest data
challenges to transform how they run their businesses, today and in the future.

For more information about Actian Vector and the entire Actian portfolio of hybrid data
management, analytics, and integration solutions on-premise or in the cloud, visit
https://www.actian.com.

More information:
• Actian Vector for SMP systems
• Actian Vector for Hadoop
• Download Actian Vector on-premise
• Actian Vector in the Amazon Marketplace
• Actian Vector in Microsoft Azure

