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Executive Overview 

Data-driven organizations rely on analytic databases to load, store, and analyze volumes of data at 
high speed to derive timely insights. Data volumes within modern organizations’ information 
ecosystems are rapidly expanding—placing significant performance demands on legacy 
architectures. Today, to fully harness their data to gain competitive advantage, businesses need 
modern scalable architectures and high levels of performance and reliability to provide timely 
analytical insights.  
 
To address this need, we conducted this benchmark study, which focuses on the performance of 
cloud-enabled, enterprise-ready, analytical-workload solutions on Actian Vector and Apache Impala 
supported by Cloudera Enterprise. The benchmark is designed to simulate a set of real-world 
scenarios to answer fundamental business questions that an organization from nearly any industry 
sector might ask.  
 
The benchmark tested the scalability of corporate-
complex workloads. The tests were based on the 
industry standard UC Berkeley AMPLab Big Data 
Benchmark with the dataset sizes being extended to 1, 
5, and 10 TB of data to simulate real-world Big Data 
demands. The testing was conducted using clusters on 
Amazon Web Services (AWS) that were equivalent in 
cluster node counts and comparable in cost per hour 
to run.  
 
Measuring execution performance of queries with 
increasing data volumes and concurrency, benchmark 
results for Actian Vector and Impala revealed some 
significant performance differentiators between the 
two products. Actian Vector performed up to 60 times 
faster overall, over 100 times faster on queries with 
joins, and up to 41 times faster on queries with 
aggregations on single-user tests. 
 
A revealing finding emerged when we stressed the 
workload by simulating 20 concurrent users. On 
simple scan queries, Impala ran 165 times slower 
when 20 users ran the same query simultaneously—
while Vector experienced only a 2x slow down as 
compared to a single user query. Also, Impala 
completed only 68% of the benchmark tests while 
Actian Vector was able to complete all portions of the benchmark suite. 
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Big Data Analytics Platform Offerings 

Big Data analytics platforms load, store, and analyze volumes of data at high speed, providing timely 
insights to businesses. This data is structured, semi-structured, or unstructured from a variety of 
sources such as machine, sensor, log, sentiment, clickstream, and geospatial data. Data-driven 
enterprises leverage data for many use cases including performing clickstream analysis to market 
new promotions, operational analytics to drive efficiency, and predictive analytics to evaluate credit 
risk and detect fraud. Often organizations leverage a mix of relational analytical databases and data 
warehouses, Apache Hadoop, and NoSQL databases to gain desired analytic insights to optimize 
their business performance.  
 
This paper focuses on cloud-enabled relational analytical databases since cloud deployments are at 
an all-time high and poised to expand dramatically. The cloud offers opportunities to differentiate 
and innovate with these database systems more rapidly than ever before possible. Many companies 
are leveraging the cloud for portions of their information ecosystem and creating hybrid 
architectures of cloud and on-premises assets. Further, the cloud has been a disruptive technology, 
as cloud storage tends to cost less, enables rapid server deployment, and offers elastic scalability as 
compared with on-premise deployments. For these reasons many data-driven companies are 
increasingly migrating to the cloud.  
 
This paper compares two popular cloud-based analytical databases: Actian Vector and Apache 
Impala. Both relational analytical databases are based on massively parallel processing (MPP) that 
scale and provide high-speed analytics. Impala is available as a component of Cloudera CDH 
(Cloudera Distribution including Apache Hadoop) commercial stack and can be used for free as 
Cloudera Express. Actian Vector is available for developers as a free, downloadable on-premise 
community edition. The community edition is also available in the cloud at the AWS and Azure 
marketplaces for single-click deployment. 
 

 AAccttiiaann  VVeeccttoorr  IImmppaallaa  
Company Actian Cloudera 
Released 2014  2013 
Current Version 5.0 5.14 
Storage Hadoop HDFS Hadoop HDFS 
SQL ANSI SQL 2003 Impala SQL 
Massive Parallel 
Processing (MPP) ü ü 

Columnar ü  
AWS Cloud ü ü 
Azure Cloud ü ü 
On-premise ü ü 
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Benchmark Setup 

The benchmark was executed using the following setup, environment, standards, and 
configurations. 

DDaattaa  PPrreeppaarraattiioonn  
The data sets used in the benchmark were an extension of the original UC Berkeley AMPLab BDB 
data set. 
 
To assess the performance of these two platforms at real-world scale, the original Berkeley BDB 
data sets were extended in size. For these tests, new data was generated. To be consistent with the 
same generation methods of the Berkeley BDB, the same Intel Hadoop Benchmark tools were used.  
 
The data preparation scripts were modfied from the original, published by the AMPLab, to generate 
the data using a generic Amazon Linux instance on AWS and store the extended BDB data set on S3. 
(The original Berkeley BDB data preparation scripts use a Hadoop instance to generate the data, 
which was not part of this benchmark.) The script simply replicated the same data generation 
method as the AMPLAb scripts. The part files were then uploaded to an S3 bucket. 
 
The extended BDB data set has the identical schema as the original Berkeley BDB data set, which 
consists of two tables—rankings and uservisits.1 
 
The schema of these two tables are detailed below. Additionally, the extended data sets were scaled 
up to 10TB. A table describing the sizes of these data sets appears below as well. 
 
 

Rankings UserVisits 
pageURL varchar(300)* 

pageRank int 
avgDuration int 

sourceIP varchar(116) 
destURL varchar(100)* 

visitdate date 
adrevenue float 

useragent varchar(256) 
countrycode char(3) 

languagecode char(6) 
searchword varchar(32) 

duration int 
*The tables can be joined on Rankings pageURL and UserVisits destURL. 

                                                        
1 The pre-existing Big Data Benchmark (BDB) that we modeled our datasets after was provided by the UC Berkeley 
AMPLab. The data was sourced from the BDB S3 bucket made publicly available at s3n://big-data-benchmark/pavlo/. 
For more about the AMPLab BDB Data Set, see https://amplab.cs.berkeley.edu/benchmark/. The documents set of 
unstructured data in the original Berkeley BDB was not replicated or used in this benchmark, since we were not testing 
the unstructured use case. 
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Data Set Rankings  UserVisits   
Name Row Count Bytes  Row Count Bytes  Total 
MCG 1TB 0.3 billion 0.02TB 5.8 billion 0.98TB 1TB 
MCG 5TB 1.2 billion 0.10TB 29 billion 4.90TB 5TB 
MCG 10TB 2.5 billion 0.50TB 58 billion 9.50TB 10TB 

 
Like the original Berkeley BDB data set, the files are segmented into parts. For the 1TB data set, the 
rankings and uservisits data are segmented into 6,000 parts each, bringing the total to 12,000 files 
per TB. Each part of the uservisits data sets contain 982,000 rows per part. The uservisits data is a 
detailed log of website clickstream activity, and the rankings table is a summary of the user visit 
activity. Since the rankings data is created in tandem with the uservisits data—such that the two 
tables can be joined on the pageURL fields—rankings has on average 1 row for every 24 rows of 
uservisits data. The serial number of the part files was padded to 6 digits (e.g., part-000023) to allow 
for the large number of part files. 
 
The major difference between our generated data sets and the original Berkeley BDB data sets 
(other than volume) was that our sets were generated in natural date order, whereas the BDB 
records appear to be generated using a random date order. The rationale of conducting the 
benchmark tests employing natural date order was that this would be closer to a real world use 
case, as a clickstream web log database would typically be loaded in natural date order. 
 
These files were generated and uploaded to an S3 bucket on AWS in the same region as the cluster 
environments. 

CClluusstteerr  EEnnvviirroonnmmeennttss  
Our benchmark included two cluster environments—one for Actian Vector and the other for 
Impala—using Amazon EC2. With EC2 instances, system administrators have a variety of processor, 
memory, and storage configuration options. It is up to the administrator to select the configuration 
best suited for their organization’s requirements. 
 
Both Impala and Vector can run on any of the EC2 instance classes. Thus, we used identical EC2 
instance types (for equal processor and memory capacity) and the exact same storage 
congfiguration to create an “apples-to-apples” comparison. 
 
In this benchmark, several selection criteria needed to be compared when evaluating and selecting 
hardware configurations: number of cluster nodes, processing power (number of and type of CPU 
cores), memory, storage, and disk I/O. The following is an explanation of each factor: 
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• Number of cluster nodes – According to Cloudera’s sizing guide, they recommend roughly 
between 15 and 20 nodes2 for our data size and concurrent user requirements. Vector 
recommends at least 3 nodes, so we chose 16 nodes for our clusters. 

• Processing power – We chose the EC2 r4 family to use for its High Frequency Intel Xeon E5-
2686 v4 (Broadwell) processors—good for general use and typical among many of the EC2 
instance classes. 

• Memory – We also chose EC2 r4 for its DDR4 memory—common among most of EC2 the 
instance types. 

• Storage and disk I/O – Since mathematically the benchmark queries “fit in memory” and the 
select count(*) from method of result set handling (see the next section) reduces disk I/O to 
a minimum, we used 1TB of Elastic Band Storage that comes with the EC2 r4 family. 

 
In summary, the following table compares all factors considered. 
 

Platform Actian Vector  Impala 
Version 5.0 (with the latest patch 53001 

applied) 
CDH 5.14 

Instance Class r4.8xlarge (dedicated, no shared 
tenancy) 

r4.8xlarge (dedicated, no shared 
tenancy) 

Nodes 16 16 
Cluster vCPUs 512 (32 per node) 512 (32 per node) 
Cluster RAM 3,904 GiB (244 GiB per node) 3,904 GiB (244 GiB per node) 
Storage 16TB EBS (1TB per node) 16TB EBS (1TB per node) 
Computing Cost $34.05 per hour ($2.128 per node) $34.05 per hour ($2.128 per node) 

 
  
The database management systems were each deployed on extra-large AWS 16 compute node 
clusters configured to run the benchmark queries using the MCG 1TB, 5TB, and 10TB data sets. Only 
16 nodes in each of the clusters were used for processing. For Vector, a 17th node was the Hadoop 
namenode, which was smaller than the other nodes on which Vector was installed.  
 
The Vector cluster instances were created in the same AWS Region, Northern Virginia (us-east-1), 
and put in the same placement group for maximum network performance between the cluster 
nodes. We also used the default security groups recommended by the product vendors.  
 

DDaattaa  LLooaadd  RRoouuttiinneess  
The data was loaded into each cluster environment using different methods. For Impala, the best 
way was to create an external table using the S3 data: 

                                                        
2 Referencing the cluster size estimation table at the above hyperlink, we used Cloudera’s recommendations of 1TB with 
100 users (15 nodes) and 15TB with 10 users (20 nodes) to arrive at this node count for our benchmark. 
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CCRREEAATTEE  EEXXTTEERRNNAALL  TTAABBLLEE  ss33rraannkkiinnggss  ((ppaaggeeUURRLL  vvaarrcchhaarr((330000)),,  ppaaggeeRRaannkk  iinntt,,  
aavvggDDuurraattiioonn  iinntt))  
RROOWW  FFOORRMMAATT  DDEELLIIMMIITTEEDD  FFIIEELLDDSS  TTEERRMMIINNAATTEEDD  BBYY  '',,''  
LLOOCCAATTIIOONN  ''ss33aa::////mmccgg--aaccttiiaann--bbeenncchhmmaarrkk//11TTBB//rraannkkiinnggss//'';;  

Then we inserted the data from the external tables into physical tables on Impala: 
iinnsseerrtt  iinnttoo  rraannkkiinnggss  sseelleecctt  ppaaggeeUURRLL,,  ppaaggeeRRaannkk,,  aavvggDDuurraattiioonn  ffrroomm  ss33rraannkkiinnggss;;  

Once the data was loaded, in Impala, we generated statistics for the data using the following SQL 
command, which is consistent with the product documentation: 

ccoommppuuttee  ssttaattss  %%tt;;  

where %t is the name of the table. 
 
With Actian Vector, we leveraged a third-party package called s3fs-fuse to mount the S3 bucket 
containing the benchmark data as a readable device directly on the Vector node leader.  Then the 
contents of the data folder were loaded using the vwload utility3 from the Linux command line: 

vvwwllooaadd  ----vveerrbboossee  ----ffddeelliimm  "",,""  ----ttaabbllee  uusseerrvviissiittss  mmccgg  //ss33mmccgg//11TTBB//uusseerrvviissiittss//**  

Once the data was loaded, in Vector, we generated statistics for the data using the following SQL 
command,4 which is consistent with the product documentation. 

ccrreeaattee  ssttaattiissttiiccss  ffoorr  aallll  ttaabblleess\\gg  

In Vector, the data was loaded in 256 partitions, according to the following Actian-specified best 
practices formula: 

The number of CPU cores / 2 
Also, 256 is divisible by the number of cluster nodes (16), so we knew the partition count was 
acceptable. 
 
For Impala, partitioning is used only when certain criteria are met.  According to Cloudera 
documentation, Impala data should be partitioned when the following conditions are true: 

• Tables are very large (TRUE for our benchmark) 
• Tables are often/always queried with conditions on certain columns (TRUE) 
• Columns have reasonable cardinality (FALSE, because pageURL and destinationURL have 

over 250 million unique values at 1TB) 
• Data are loaded from an ETL pipeline (NOT APPLICABLE) 

Thus, we did not partition the Impala data due to the high cardinality of the URL data.5 
 
Load times were not part of this benchmark because of the inability to create load processes that 
were comparable with all other factors set equal. We found both times, with the methods chosen, 
to be within the bounds of acceptability for an enterprise. 

                                                        
3 The Actian Vector family of databases have several methods of loading external data, including a SQL COPY command. 
But vwload was used so that data could be loaded uninterrupted and unattended from the Linux command line using 
nohup. 
4 SQL statements in the Ingres/Vector family of databases are terminated with \g. 
5 We attempted to load the data into Impala with partitions anyway, and the load operations failed on Impala. 
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UUssee  CCaasseess  ((QQuueerryy  SSeettss))  
We sought to replicate the UC Berkeley AMPLab Big Data Benchmark queries in larger scale data 
volumes with a few exceptions.  
 
First, we deviated from the original BDB methodology that had each query’s results written to a 
table using a platform-dependent variant of CREATE TABLE AS SELECT (CTAS). We wanted I/O to 
impact the benchmark results as little as possible.  
 
We decided to change from CTAS to SELECT COUNT(*) FROM as a method of handling the large 
result sets because we wanted to use the most efficient means for handling the result set. Thus, 
Query Sets 1 and 2 (see below) were encapsulated with the following: 

SSEELLEECCTT  CCOOUUNNTT((**))  FFRROOMM  ((%%qq));;  

where %q was the query itself. 
 
BBDDBB  UUssee  CCaassee  11::  SSccaann  QQuueerryy  SSeett  
Query set 1 primarily tested the throughput with which each database can read and write table 
data. Query set 1 had 3 variants: 
 

Variant a BI Use Small result sets that could fit in memory and quickly be 
displayed in a business intelligence tool (450 million rows 
@ 10TB) 

Variant b Intermediate Use Result set likely too large to fit in memory of a single node 
(1.3 billion rows @ 10TB) 

Variant c ETL Use Result sets are very large as you might expect in a large 
ETL load (2.0 billion rows @ 10TB) 

 
Query set 1 contained exploratory SQL queries with potentially large result sets. The following table 
shows how the query was scaled: 
 

1a sseelleecctt  ppaaggeeUURRLL,,  ppaaggeeRRaannkk  ffrroomm  rraannkkiinnggss  wwhheerree  ppaaggeeRRaannkk  >>  11000000  

1b sseelleecctt  ppaaggeeUURRLL,,  ppaaggeeRRaannkk  ffrroomm  rraannkkiinnggss  wwhheerree  ppaaggeeRRaannkk  >>  110000  

1c sseelleecctt  ppaaggeeUURRLL,,  ppaaggeeRRaannkk  ffrroomm  rraannkkiinnggss  wwhheerree  ppaaggeeRRaannkk  >>  1100  

 
 
BBDDBB  UUssee  CCaassee  22::  SSuumm  AAggggrreeggaattiioonn  QQuueerryy  SSeett  
Query set 2 applied string parsing to each input tuple then performed a high-cardinality aggregation. 
Query set 2 also had 3 variants: 
 

Variant a Smaller number of aggregate groups (65,025) 
Variant b Intermediate number of aggregate groups (1.6 million) 
Variant c Larger number of aggregate groups (17 million) 
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The following table shows how the query was scaled: 
 

2a sseelleecctt  ssuubbssttrr((ssoouurrcceeIIPP,,  11,,  88)),,  ssuumm((aaddRReevveennuuee))  ffrroomm  uusseerrvviissiittss  ggrroouupp  bbyy  
ssuubbssttrr((ssoouurrcceeIIPP,,  11,,  88))  

2b sseelleecctt  ssuubbssttrr((ssoouurrcceeIIPP,,  11,,  1100)),,  ssuumm((aaddRReevveennuuee))  ffrroomm  uusseerrvviissiittss  ggrroouupp  bbyy  
ssuubbssttrr((ssoouurrcceeIIPP,,  11,,  1100))  

2c sseelleecctt  ssuubbssttrr((ssoouurrcceeIIPP,,  11,,  1122)),,  ssuumm((aaddRReevveennuuee))  ffrroomm  uusseerrvviissiittss  ggrroouupp  bbyy  
ssuubbssttrr((ssoouurrcceeIIPP,,  11,,  1122))    

 
 
BBDDBB  UUssee  CCaassee  33::  JJooiinn  QQuueerryy  SSeett  
This query set joined a smaller table to a larger table then sorted the results. Query set 3 had a small 
result set with varying sizes of joins. The query set had 3 variants: 
 

Variant a Smaller JOIN within a date range of one month 
Variant b Medium JOIN within a date range of one year 
Variant c Larger JOIN within a date range of five years 

 
The time scanning the table and performing comparisons became a less significant fraction of the 
overall response time with the larger JOIN queries. 
 

3a sseelleecctt  ssoouurrcceeIIPP,,  ssuumm((aaddRReevveennuuee))  aass  ttoottaallRReevveennuuee,,  aavvgg((ppaaggeeRRaannkk))  aass  ppaaggeeRRaannkk  
ffrroomm  rraannkkiinnggss  RR    

jjooiinn  ((sseelleecctt  ssoouurrcceeIIPP,,  ddeessttUURRLL,,  aaddRReevveennuuee  ffrroomm  uusseerrvviissiittss  UUVV  wwhheerree  
UUVV..vviissiittDDaattee  >>  ""11997700--0011--0011""  aanndd  UUVV..vviissiittDDaattee  <<  ""11997700--0022--0011""))  NNUUVV  oonn  ((RR..ppaaggeeUURRLL  
==  NNUUVV..ddeessttUURRLL))    

ggrroouupp  bbyy  ssoouurrcceeIIPP  oorrddeerr  bbyy  ttoottaallRReevveennuuee  ddeesscc  lliimmiitt  11;;  

3b sseelleecctt  ssoouurrcceeIIPP,,  ssuumm((aaddRReevveennuuee))  aass  ttoottaallRReevveennuuee,,  aavvgg((ppaaggeeRRaannkk))  aass  ppaaggeeRRaannkk  
ffrroomm  rraannkkiinnggss  RR    

jjooiinn  ((sseelleecctt  ssoouurrcceeIIPP,,  ddeessttUURRLL,,  aaddRReevveennuuee  ffrroomm  uusseerrvviissiittss  UUVV  wwhheerree  
UUVV..vviissiittDDaattee  >>  ""11997700--0011--0011""  aanndd  UUVV..vviissiittDDaattee  <<  ""11997711--0011--0011""))  NNUUVV  oonn  ((RR..ppaaggeeUURRLL  
==  NNUUVV..ddeessttUURRLL))    

ggrroouupp  bbyy  ssoouurrcceeIIPP  oorrddeerr  bbyy  ttoottaallRReevveennuuee  ddeesscc  lliimmiitt  11;;  

3c sseelleecctt  ssoouurrcceeIIPP,,  ssuumm((aaddRReevveennuuee))  aass  ttoottaallRReevveennuuee,,  aavvgg((ppaaggeeRRaannkk))  aass  ppaaggeeRRaannkk  
ffrroomm  rraannkkiinnggss  RR    

jjooiinn  ((sseelleecctt  ssoouurrcceeIIPP,,  ddeessttUURRLL,,  aaddRReevveennuuee  ffrroomm  uusseerrvviissiittss  UUVV  wwhheerree  
UUVV..vviissiittDDaattee  >>  ""11997700--0011--0011""  aanndd  UUVV..vviissiittDDaattee  <<  ""11997755--0011--0011""))  NNUUVV  oonn  ((RR..ppaaggeeUURRLL  
==  NNUUVV..ddeessttUURRLL))    

ggrroouupp  bbyy  ssoouurrcceeIIPP  oorrddeerr  bbyy  ttoottaallRReevveennuuee  ddeesscc  lliimmiitt  11;;  

 

CCoonnccuurrrreennccyy  TTeesstt  HHaarrnneessss  
The final objective of the benchmark was to demonstrate Vector and Impala performance at scale in 
terms of concurrent users. There are many ways and possible scenarios to test concurrency. We 
employed a use case where the identical query was executed at the exact same time by 20 
concurrent users. 
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For these tests, we created a concurrency test harness written in Java using JDBC drivers. This 
approach permitted the same query to be run in parallel and simulate multiple users accessing the 
platform at the same time. The query driver had parameters that we passed to it to create multiple 
threads and execute the benchmark queries in parallel.  
 
For example, the following diagram demonstrates the query driver’s parallel execution of the 3a 
query to simulate 20 concurrent users. 
 

Thread 1 2 3 4 5 6 7 8 9 10 
Query 3a 3a 3a 3a 3a 3a 3a 3a 3a 3a 

 

Thread 11 12 13 14 15 16 17 18 19 20 
Query 3a 3a 3a 3a 3a 3a 3a 3a 3a 3a 

 
Although threads 1–20 were released simultaneously, the two platforms behaved very differently. 
 
Impala has a feature known as admission control to impose limits on concurrent queries. The idea is 
to avoid resource usage overruns and out-of-memory conditions on busy clusters. Admission control 
acts by holding certain query requests in a queue until there are enough resources to run them. For 
the purposes of our benchmark, we wanted to avoid admission control, because queued queries 
would negatively skew the execution results and not demonstrate the true ability of the platform to 
handle concurrency. 
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Benchmark Results 

SSiinnggllee  UUsseerr  EExxttrraa  LLaarrggee  1166--nnooddee  CClluusstteerr  RReessuullttss  
The following tables display the individual query median and overall cumulative execution times (in 
seconds) for the benchmark queries using the 16-node clusters. 
 
11TTBB  DDaattaa  SSeett  
In the case of the extended 1TB data set on a 16-node cluster, Vector query response times were all 
faster than Impala. Overall, Vector was 27 times faster than Impala. However, the biggest gap 
appeared during the Query 3 Join series. For Vector, Query 3a ran 50 times faster—followed by 3b 
and 3c running 21 and 36 times faster, respectively. Below are the individual query results for the 
1TB data set of Impala and Vector median query execution times out of 5 trials. 
 

 
*This graph measures time to execute queries. A shorter bar indicates a faster response time. 
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55TTBB  DDaattaa  SSeett  
In the case of 5TB (i.e., 29 billion rows in the uservisits table) on the same 16-node cluster, Vector 
query response times were all faster than Impala. Overall, Vector was 44 times faster than Impala. 
Again, the biggest gap was noticed during the Query 3 Join series. For Vector, Query 3a ran over 500 
times faster. Below are the individual query results for the 5TB data set of Impala and Vector 
median query execution times, again, out of 5 trials. 
 

 
*This graph measures time to execute queries. A shorter bar indicates a faster response time. 
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1100TTBB  DDaattaa  SSeett  
In the case of 10TB on the same 16-node cluster, Vector query response times were all faster than 
Impala. On the whole, Vector was 37 times faster than Impala. Once again, the continued separation 
is seen with the Query 2 Aggregation and Query 3 Join series. For Vector, queries 2a, 2b, and 2c 
were 53, 42, and 33 times faster, respectively. Also for Vector, Query 3a was 500 times faster, and 
Query 3b finished 66 times faster. Query 3c did not complete on Impala at 10TB. 
 

 
*This graph measures time to execute queries. A shorter bar indicates a faster response time. 
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Overall, the cumulative execution times (with all median times added together) are presented in the 
following graph: 

 
*This graph shows query execution times added together.  

A shorter bar indicates faster total response times across the workloads. 
 
Across all data sizes and workloads for the single-user tests, Vector was over 39 times faster than 
Impala.  
 

CCoonnccuurrrreennccyy  RReessuullttss  
 
As previously noted, we conducted the benchmark tests using a driver to simulate concurrency of 20 
users to see how both platforms would perform. Impala struggled with concurrency, and did not 
complete many of the concurrency tests. We discuss the behavior we experienced after the results. 
 
Vector was able to complete all tests at all data scale and concurrency levels. 
 
The following tables display the median execution times (in seconds) over 5 runs of the benchmark 
queries executed to simulate 20 concurrent users.  
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SSccaann  QQuueerryy  SSeett  11  wwiitthh  2200  CCoonnccuurrrreenntt  UUsseerrss  
In the case of the Scan Query 
Series 1 on the 16-node clusters 
with 20 users, Vector 
concurrency response times 
were all faster than Impala.  
 
Vector completed all the 
queries in less than a second. 
Impala execution times became 
exponentially longer with larger 
data volumes. 
 
 
NOTE: The 1TB and 5TB concurrency 
tests were executed on Impala to 
simulate 4 queries sent to 5 nodes 
simultaneously (20 total) to take 
scratch space pressure off a single 
node. For the 10TB test, we utilized 
the 16TB scratch drive for a 20 
queries sent to 1 node test. 
 
 
 
*This graph measures time to execute 

queries. A shorter bar indicates a 
faster response time. 

  



MCG Global Services  Cloud Database Benchmark  
 
 

© MCG Global Services 2018 http://www.mcknightcg.com Page 16 

  
JJooiinn  QQuueerryy  SSeett  33  wwiitthh  2200  CCoonnccuurrrreenntt  UUsseerrss 
In the case of Join queries, Vector query response times for 20 users were faster than Impala. For 
Vector at 20 users, Queries 3a and 3b were over 700 and 300 times faster, respectively. Query 3c did 
not complete on Impala at 1TB. Also, Impala did not complete any of Query Set 3 at 5TB or 10TB.  
The following table shows Join Queries (Query Set 3) results using the 1TB data set: 
 

 
*This graph measures time to execute queries. A shorter bar indicates a faster response time. 

  
  
QQuueerriieess  NNoott  CCoommpplleettiinngg  oonn  IImmppaallaa  
Many of the concurrent queries benchmark tests did not complete on Impala. None of the 
Aggregation (Query Set 2) queries completed at any data size on Impala. 
 
Observing the nature of these incomplete query runs revealed a confluence of issues. First, disk 
spilling contributed to the underlying problem. For instance, the concurrent tests of aggregation 
(Query Set 2) saw disk spilling as high as 65GB per query. With 20 concurrent queries running, the 
total disk spillage was 1.3TB. This put enormous pressure on Impala. 
 
Second, Impala uses temporary disk space during intensive query runs called scratch space. 
According to Cloudera, the scratch space must not be part of the HDFS but rather the local 
filesystem. Since the scratch space is not distributed throughout the cluster, the node to which we 
sent the query would have the entire scratch directory. During concurrent query execution, the 
scratch space would reach the capacity of the local file system, and the queries would fail. 
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We compensated for this by attaching a 16TB disk to the node receiving the query requests to use it 
as scratch space. However, many of the concurrent queries would not complete within 2 hours, 
which was our allowance.  
 
The table below shows which queries would not complete on Impala due to query failure or the 
execution time exceeding 2 hours. Impala completed 68% of the benchmark tests. All benchmark 
tests completed on Vector. 
   

1 User 
 

20 Users 
 

Data Size Query Vector Impala Vector Impala 
1TB Query 1a  0.04   0.64   0.10   3.88  
  Query 1b  0.04   0.64   0.11   2.94  
  Query 1c  0.04   0.64   0.11   13.07  
  Query 2a  7.58   86.22   12.88  Did Not Complete  
  Query 2b  9.11   135.28   16.99  Did Not Complete  
  Query 2c  12.01   381.61   20.22  Did Not Complete  
  Query 3a  1.16   58.71   1.94   1,468.71  
  Query 3b  9.77   207.39   14.56   4,553.28  
  Query 3c  18.33   666.95   23.51  Did Not Complete  
5TB Query 1a  0.07   2.05   0.15   26.15  
  Query 1b  0.08   2.05   0.20   27.03  
  Query 1c  0.07   1.95   0.19   28.67  
  Query 2a  24.81   1,324.88   35.05  Did Not Complete  
  Query 2b  30.85   1,229.76   49.42  Did Not Complete  
  Query 2c  42.29   1,473.06   56.94  Did Not Complete  
  Query 3a  3.38   1,335.95   4.77  Did Not Complete  
  Query 3b  29.85   1,513.15   36.86  Did Not Complete  
  Query 3c  76.98   2,265.95   84.90  Did Not Complete  
10TB Query 1a  0.13   3.59   0.24   603.08  
  Query 1b  0.17   3.67   0.34   602.16  
  Query 1c  0.15   3.68   0.31   599.29  
  Query 2a  38.86   2,055.06   59.16  Did Not Complete  
  Query 2b  47.90   2,020.01   77.92  Did Not Complete  
  Query 2c  72.99   2,437.77   120.59  Did Not Complete 
  Query 3a  4.85   2,461.89   9.02  Did Not Complete  
  Query 3b  44.67   2,966.18   75.61  Did Not Complete  
  Query 3c  113.77  Did Not Complete   164.33  Did Not Complete  

 
 



MCG Global Services  Cloud Database Benchmark  
 
 

© MCG Global Services 2018 http://www.mcknightcg.com Page 18 

IImmppaallaa  DDiisskk  SSppiilllliinngg  
The factor that contributed the most for the long execution times on Impala (and the failure of the 
concurrency jobs to fully complete) were due to disk spilling that occurred—especially in the larger 
data sets and more complex queries (sets2 and 3). For example, we saw Impala spill as much as 
65GB to disk per query for the Aggregation queries (query set 2). The following chart details the disk 
spilling we experienced on the Impala cluster. 
 

 
*This graph reflects only Impala. Vector did not experience disk spilling on any of the benchmark tests. 

 
Reviewing Cloudera’s documentation about disk spilling revealed the factors that caused Impala to 
spill to disk. The following table lists Impala’s disk spilling triggers and identifies the queries that met 
those conditions: 
 

Impala may spill to disk when… Scan  
(Query Set 1) 

Aggregation 
(Query Set 2) 

Join  
(Query Set 3) 

A query uses a GROUP BY clause for 
columns with millions of distinct values  ü  

Large tables are joined together   ü 
A large result set is sorted by the ORDER 
BY clause   ü 

The DISTINCT and UNION operators build 
in-memory structures for unique values    

 
These are the most likely causes for the extensive disk spilling we experienced with Impala. 
 
Vector experienced no disk spilling on any of the benchmark tests. 
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Conclusion 

Cloud databases, notably on Amazon Web Services, are a way to avoid upfront large capital 
expenditures, provision quickly, and provide performance for advanced analytic queries in the 
enterprise. Relational databases with analytic capabilities continue to support the advanced analytic 
workloads of the organization with performance, scale, and concurrency. In a representative set of 
corporate-complex queries, Actian Vector significantly outperformed Impala when scale, and 
especially joins, were introduced. 
 
Measuring execution performance of queries 
with increasing data volumes and 
concurrency, benchmark results for Actian 
Vector and Impala revealed some 
performance differentiators between the two 
products. Actian Vector performed up to 60 
times faster overall, over 100 times faster on 
queries with joins, and up to 41 times faster 
on queries with aggregations on single user 
tests.  
 
A revealing finding was observed when we 
stressed the workload by simulating 20 
concurrent users. On simple scan queries, 
Impala ran 165 times slower when 20 users 
ran the same query simultaneously—while 
Vector only experienced a 2x slow down.6 
Additionally, Impala fully completed only 68% 
of the benchmark tests. 
 
These performance results are most likely 
explained by the technology underlying 
Vector. The basic architecture of Actian Vector 
is the Actian patented X100 engine, which 
utilizes a concept known as “vectorized query 
execution,” where data processing is done in 
chunks of cache-fitting vectors. Vector performs “single instruction, multiple data” processes by 
leveraging the same operation on multiple data simultaneously and exploiting the parallelism 
capabilities of modern hardware. It reduces overhead from conventional “one-row-at-a-time 

                                                        
6 In 2011, Vector set a new record in a TPC-H benchmark at scale factor 100, delivering 340% higher performance than 
the previous best record while improving price/performance by 25%. Today Vector still leads in the 3,000GB category 
according to the TPC. 



MCG Global Services  Cloud Database Benchmark  
 
 

© MCG Global Services 2018 http://www.mcknightcg.com Page 20 

processing” found in other platforms. Additionally, the compressed column-oriented format uses a 
scan-optimized buffer manager.  
 
Overall, Actian Vector on AWS or on-premises is an excellent choice for data-driven companies 
needing high performance and a scalable analytical database in the cloud or to augment their 
current, on-premises data warehouse with a hybrid architecture—at a reasonable cost.   
 
For more information about Actian Vector including how to get a free download, go to 
https://www.actian.com/analytic-database/vector-smp-analytic-database/. 
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About MCG Global Services 

William McKnight is President of McKnight Consulting Group (MCG) Global Services 
(http://www.mcknightcg.com). He is an internationally recognized authority in information 
management. His consulting work has included many of the Global 2000 and numerous midmarket 
companies. His teams have won several best practice competitions for their implementations and 
many of his clients have gone public with their success stories. His strategies form the information 
management plan for leading companies in various industries. 
 
Jake Dolezal has two decades of experience in the Information Management field with expertise in 
business intelligence, analytics, data warehousing, statistics, data modeling and integration, data 
visualization, master data management, and data quality. Jake has experience across a broad array 
of industries, including: healthcare, education, government, manufacturing, engineering, hospitality, 
and gaming. He has a doctorate in information management from Syracuse University. 
 
MCG services span strategy, implementation, and training for turning information into the asset it 
needs to be for your organization. We strategize, design and deploy in the disciplines of Master Data 
Management, Big Data Strategy, Data Warehousing, Analytic Databases, and Business Intelligence. 
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About Actian 

Actian, the hybrid data management, analytics, and integration company, delivers data as a 
competitive advantage to thousands of customers worldwide. Through the deployment of 
innovative hybrid data technologies and solutions Actian ensures that business critical systems can 
transact and integrate at their very best—on premise, in the cloud or both. Thousands of forward-
thinking organizations around the globe trust Actian to help them solve the toughest data 
challenges to transform how they run their businesses, today and in the future.  
 
For more information about Actian Vector and the entire Actian portfolio of hybrid data 
management, analytics, and integration solutions on-premise or in the cloud, visit 
https://www.actian.com. 
 
More information: 
• Actian Vector for SMP systems  
• Actian Vector for Hadoop  
• Download Actian Vector on-premise  
• Actian Vector in the Amazon Marketplace  
• Actian Vector in Microsoft Azure  
 
 


